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PREFACE

This report contains further results on the theory and
applications of a quasi-optimum control technique obtained in
"Study of Quasi-Optimum Feedback Control Techniques" under
Contract NAS 2-3636 with the Ames Research Center, National
Aeronautics and Space Administration. The results of an earlier
study, performed under Contract NAS 2-2648 with the same
agency, are contained in NASA Contractor Report CR-527,
"Study of Quasi-Optimum Feedback Control Techniques" to

which this report can be regarded as a sequel.

The principal investigator was Dr. Bernard Friedland;
contributors included Dr. Frederick E. Thau and Messrs. Sanford
Welt and Chong K. Ling, all of the Controls Department, Aero-
space Research Center, Kearfott Group, General Precision
Systems Inc. Dr. Michael Schilder, of the same department
assisted with Section 2.1 . Dr. Elwood C. Stewart, of the
NASA Ames Research Center, served as Contract Technical

Monitor.
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INTRODUCTION AND SUMMARY

The principal impediment to widespread application of optimum control theory
has been the lack of practically feasible techniques for implementing the required com-
putation. In particular, the implementation requires a very rapid solution of a two-point
boundary value problem in ordinary differential equations. Since there is rarely a need
for absolute optimality, and in fact the performance criterion is often quite subjective, a
moderate sacrifice in performance is generally an acceptable price to pay for simplicity of

implementation.

In 1965, Friedland [A1] presented a quasi-optimum control technique which
offered the possibility of achieving nearly optimum performance by means of a control
system which can be readily implemented. When the technique was first introduced, only
the rudiments of the theory and a simple example to demonstrate feasibility were given.
Further development of the theory and its application to realistic guidance and control
problems were undertaken in 1965 under NASA Contract NAS 2-2648 and reported in
NASA Contractor Report CR-527 [A1] and in several technical papers { A2 - A8].
This study was continued in 1966-67 under Contract NAS 2-3636; this report gives the

results achieved under the latter contract.

The basis of the quasi-optimum control technique under investigation is the
well-established engineering practice of approximating a complicated dynamic process by
a simpler process, designing a control system for the latter, and then amending the design
(if necessary) to account for the difference between the original process and the approxi-
mation used. A systematic application of this design approach, within the framework of
modern optimum control theory is the essence of our quasi-optimum control technique.
in the application of this technique it is necessary that the "simplified process", in addi-
tion to being a reasonably faithful representation of the true process, must be such that
the solution of the two-point boundary-value problem governing its optimum control law

con be reduced to manageable proportions. The correction to the optimum control law



then requires the evaluation of a correction matrix by the solution of a matrix Riccati
equation. The solution matrix of this Riccati equation is used to correct the solution to the

simplified process.

The process for which the quasi-optimum control law is sought is represented by

the system of first-order differential equations

x = f(x, v) (1)
where x = {xo, Xyr seey xn} is the state vector, v = {u] rUgr ceey ur} is the
control vector, and f = {fo, f] , f2 ;) eee s Fn} is a vector-valued function. The com-
ponent x of x is a measure of the performance. A feedback control law u = u(x) is
to be determined which takes the process from some current* state x(t) to a final state
x(T), such that the performance index xO(T) is @ minimum, and the remaining n states
satisfy the boundary conditions

©(x(T) =0 @)
where @ = {<P] r Py ey (‘Ds}’ s < n. The terminal time T may be either free or

specified. In addition, the control u may be required to be a member of a closed,

bounded set .

The structure of the optimum controller can be determined by the maximum

principle of Pontryagin [B1] . Define the Hamiltonian function:
h(p, x, u) = p"f(x, u) @)

where p = {po, Pyroeees pn} and (’) denotes transposition, and where p satisfies

the adjoint equation

;.> = -grodxh = -hx (4)

It is seen from (1) that

x =grad h =h 5
X grop o (5)

*The current time is denoted by the variable t, terminal time by T; time when it is used
as an independent variable is denoted by T, e.g., t <T < T,



T

Necessary conditions for the existence of an optimum control u* are:

(i) h is moximum with respect to v € §, that is,

h(x, u*, p) = max h(x, v, p)
x, u¥*, p :‘Ga X, U, P 6a)
(ii) h(x, u*, p) = const (6b)

(iii) The adjoint vector satisfies the "transversality conditions"
1 Y

-1
p(T) = [’4,7 k-] _ @)
where A is a vector of s constants

and
acpt

axj

The optimum control system may thus be conceived as having the structure shown
in Figure 1. The transformation G of the process state vector x and the adjoint vector

p into the control

v* =0 (p, x) ®)

is defined by (6a), and is determined by maximizing the Hamiltonian (3) with ve Q.
Equations (4), (5) and (8), together with boundary conditions (2) and (7), define a two-
point boundary-value problem. Given the current state x(t) (if a solution of the boundary-
value problem exists), then the adjoint p(t) may be determined as the solution to the
two-point boundary-value problem. Thus, (2), (4), (5), @) and (8) define a transformation
y of the current state x(t) into the adjoint p{t). For most applications, the transformation
implicit in the solution of the two-point boundary-value problem cannot be obtained by any
practical method of computation, and hence an approximate solution to the two-point

boundary-value problem is needed.
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Suppose the state x can be regarded as the sum of two terms
x =X+ ” ©)
where X is the state of the "simplified process". Then (1) can be written
X +E =X+ £, u)

Furthermore, assume that £ issmall. Then the original system can be approximated by

the system

X = lim f(X + £, u) = F(X, v) (10)
£-0

where ¢ (X(T)) = 0. By defining a "simplified Hamiltonian" H = P’F(X,u), a corre-

sponding two-point boundary-value for the simplified system can be derived, i.e.,

X = H, ; P = -H (i

['cb"] _A—jl

where A is an s-dimensional vector of "slack'"variables.

and

P(T)

The "simplified adjoint" vector P, which, by assumption, can be solved for in
terms of X, may be regarded as an approximate solution for p of the exact problem. For
nonzero £, however, this approximation may be inadequate. Consequently, it is desirable
to include the effects of the state "error" £ more exactly. For this purpose suppose that

a change ¥ in the adjoint vector results because of the error £, i.e.,
p=P+y (12)

Since p can be expressed as a function of x, i.e. p(x) = p(X + §), by expanding

about the state X, and retaining only the first two terms, we obtain

op .




By (12),the first term p(X) is the adjoint vector P of the simplified problem ; the second

term is the vector £ premultiplied by a gain matrix

ap
M(X) = | -2
1
x=X
Thus (12) can be written
p(x) = P(X) + M(X)§ (13)
and consequently
P(1) = M(1) £(1) (14)

The structure of the quasi-optimum control system based on this approximation
is shown in Figure 2. The suboptimum controller comprises three units: the g - unit which
is the same as determined for Figure 1 by maximizing h with respect to ue&, the unit
T' which transforms X into P, and the gain unit M(X) by which £ ismultiplied to

yield a correction to P.
To obtain M, differentiate (13) with respect to time:

P+ ME + ME : (15)

p

Likewise

x =X +¢
Substituting these relations into the canonical equations (3) and (4) and expanding about

the state and the adjoint for the simplified process gives

X +E = h = hpt (Hyp+ HppM) & + %

2 (16)

P+ KAE + ME + Hp M)E + O(E")

"
|
>
H

~h, - (H

X X XX
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where,

yo| % yo|_2% -
XP ax.api PX ap.axt XP
L. "] - x=X - J - X=X
r ] i ]
N g |2
PP ap.api XX ax.axH
— '] d x=X = J X=X
Upon use of (11), and after dropping terms of O (52) , (16) reduces to
£ = (HXP + HPPM)g (17)
: AE = - +
Mg + Mg (HXX HPXM)E (18)

Substitution of (17) into (18) gives:
(M + MH. o+ Ho M + MM + H )£ =0

If this relationship is to hold for all £, the matrix M must satisfy the matrix Riccati

equation:

-M = MHXP + HPXM + MHPPM + HXX (19)

One method of solving the matrix Riccati equation is to observe that it corres-
ponds to the auxiliary equations
§ = Hypl * Hpp¥
. (20)
b= Hyx® - Hpx¥

which is equivalent to (16) when the higher-order terms are dropped. This is a linear

system whose solution can be expressed as
E(T) = @, (T, DE() + @, (T, N (1)

@1)
P(T) = @, (T, DE() + 20 (T, DY (1)



Brne,

S8t

where

®,,(T. 1) P,,(T, 1)
P(T, t) = (22)
c1>2](T, t) <I>22(T, t)

is the "transition matrix" corresponding to:

Equations (21) are actually 2(n + 1) equationsin n + 1 unknowns. To solve we need
(n + 1) relations in addition to (21). These relations come from the boundary conditions.
Suppose that for the exact problem the boundary conditions at T = T are given by (2) and
(7). If in the simplified process the boundary conditions are satisfied at time T, then in
the exact problem these conditions must be satisfied at T + dT. By expanding the exact

state and adjoint about the time T and dropping second-order infinitesimals, we obtain

x(T +dT) = x(T) + x(T)dT
= X(T) + £(T) + X(T)dT (23a)
p(T +dT) = p(T) + p(T)dT

P(T) + ¥ (T) + p(T)dT (23b)

Substituting (23a) in (2) and expanding about the state of the simplified process gives
©(X(T)) + RE(T) + @X(T)dT = 0 (24a)

Similarly, for the adjoint we have

P(T) + $(T) + P(T)dT = [-q,i,'—x—] (24b)



Since the simplified problem has been assumed to satisfy the boundary conditions of the same
form, i.e., ©(X(T)) =0 and P(T) = [ ol -:l , then (24a) and (24b) reduce to the

I
n + 1 independent equations

B[E(T) + X(T)dT =0 (25a)
B(T) + P(T)dT = @'n (25b)
where
n=Xx-A
Finally, we must have
e 3o 38
(26)

PrE+X'Pp =0

Equations (25a) , (25b) and (26) give a total of n +2 relations. Since dT is an additional
variable, there are just enough equations needed to solve (21) for ¢ (t) as a function of

£ (t) and thereby obtain M(t). In most cases, the linear differential equations (20) have
time-varying coefficients and as a result cannot be solved analytically, Hence, it becomes
necessary either to approximate the solution to the Riccati equation or to integrate (19)

numerically.

Numerical integration of the Riccati equation requires that boundary conditions
(25a) and (25b) be translated into conditions on M(T). Consequently, (19) must be inte-
grated backwards in time starting at T = T. Part of the complexity of this problem arises
because the matrix M(T) may not exist at T = T, hence, the boundary conditions cannot
be translated directly into conditions on M(T). This problem may be circumvented by

expressing M(t) in the form

1

M(t) = S(t) = R()Q" " (HR’(t) @7)

integrating systems of differential equations for S, Q and R for a small time & backwards

from T and using the results to compute M(T - A) . It was shownin [Al] and [A7]

10
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that the matrix S satisfies (19) with S(T) = 0, and R and Q satisfy

-R = (A’ + SB)R . (28)
-Q = R’BR ' 29)
with boundary conditions
|
R(T) = (@71 -P(T) ] (30)
|
Q) = [-- 0oL FXULL @1)
X (T) @’ :—X’(T)P(T)
where
a<p1/
o = S (32)

is the Jacobian matrix of the terminal constraint vector ¢ (x(T)) = 0.

Although the solution of (27) - (31) is well-suited to numerical integration by
means of a high-speed digital computer, we have found, in several examples, that it is
practical to further simplify the determination of M by assuming M ~ 0, and hence to

solve the algebraic system

MHyp + HpyM + MH M+ Hy o= 0 (33)

It was anticipated at the beginning of our investigation (under Contract NAS
2-2648) that the quasi—optimum control technique would be limited to practical problems
in which ¢ is so small that the simplified control law gives "passable" performance. We
were pleased to discover that the quasi-optimum control technique works even when the

simplified control law is patently unacceptable.

One of the examples considered [Al, A4] was minimum time rendezvous in
free space. The simplified problem was obtained by assuming negligible angular velocity
in a relative coordinate system and thereby reducing the problem to a one-dimensional
(second-order) case for which the explicit control law is well-known. The application of

this control law to the true process results in purely radial acceleration of the controlled

11




vehicle relative to target and causes the vehible to orbit the target in order to conserve
angular momentum, and is completely unacceptable even when the initial angular momen-
tum is quite small. When the quasi-optimum control law is used, however, the rendezvous
is actually achieved, and the rendezvous time and trajectory compares favorably with the

exact optimum even when the initial relative velocity is purely tangential.

Another application which verified that the quasi-optimum conirol law may
work even when the simplified control law doesn't , was in the flight control of a flexible
booster [Al1, A5] . In this case, thesimplified problem was obtained by assuming negligi-
ble bending. When the control law obtained for the rigid vehicle was used for the flexible
vehicle, excessive bending moments were produced and led to vehicle failure. The quasi-
optimum control law, which corrected the rigid body control law to account for bending,

however, gave good performance for a vehicle of moderate flexibility.

In other applications, considered in 1966-67 under Contract NAS 2-3636, and
described in detail below, we found that the quasi-optimum control law gave visible im-
provement over that obtained with the simplified control law, but, because the simplified

control law gave passable performance, the improvement is not as striking.

One of the general theoretical questions concerning the quasi-optimum control
technique is the estimation of the degradation of performance resulting from the use of the
quasi-optimum control law. This problem has received attention in 1966-67. In particular,

in one approach,we considéered the "mildly-nonlinear” process
x = Ax + upf(x) + Bu (34)
with a performance criterion

Vo= %JT (x'Rx + u'Qu)dT (35)

to be minimized, where T isfixed, Q is a positive-definite matrix, g is a small para-

meter, and f(x) is a nonlinear function which is twice differentiable with respect to all

its arguments. Earlier [Al] we showed that the quasi-optimum control law for this process,

12
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in accordance with the theory summarized above, is
v = Q7B K(T, T)x + m 0 TIK) (36)

where K(T, t) is the solution to the matrix Riccati equation for the simplified process,
i.e.
-K = KA + A’K + KBQ 'B’K - R (37)

with K(T, T) = 0, and mux is the solution to

= (AT +KBQTTK) m o+ k) + o8 Kk« (38)
— Kx —ux d x

with

1l
o

T
—"—‘ux( )
In the present investigation we have demonstrated that, for sufficiently small

i, the quasi-optimum control law (36) is indeed better then the simplified control law
v =Q TBK(T, 1)x (39)

Specifically the quasi-optimum control law results in a performance Vq which is smaller
than the performance Vs obtained by use of the simplified control law (3%9) by a positive
quantity times p~ . The details of this calculation, which it would appear can be extended
to a more general class of problems, are given below. Another approach which was con-
sidered was to expand the solution of the differential equations obtained by use of the
optimum, the quasi-optimum, and the simplified control laws on the actual process about the
solution to the simplified process. A linear, nonhomogeneous differential equation for the
difference between these solutions is obtained. The properties of this differential equation
can Be used to compare the performance of the various cases. The above approaches yield
some results on the problem of performance; a considerable amount of work, however, still

remains to be done on this problem.

13



As an alternative to determining the performance of the quasi-optimum system

for processes with performance functionals of the form

1

V=25 (0Mx() = [Ta6) + hio)] dr
t

it is reasonable to examine whether the quasi-optimum control law optimizes anything, and
if so, what is optimized. This question has led to a study of the general inverse optimum

control problem: what is optimized by a control law of specified form?

We have found that performance indices in the above form which are minimized

by.a given control law

v =0(x
for the system
X = f(x) + Gu
must safisfy
-1 ,
o) =n (-G'Mx)

and

qx) = -h(@ () - xX’M[fx) + Go(x)]

for all x, where m = dh/du. Furthermore, we found for linear and nonlinear single-
input systems that if the optimum performance is required to be a positive-definite quadratic
form in the state variables, then the optimum control must be a function of a linear combina-
tion of (at least) those state variables which are directly affected by the control. Details

of these calculations are contained in Appendix 1 and in [A8].

One of the important topics in optimum control theory is the stochastic optimum

control problem, in which it is desired to minimize

1l

I
Vix,t) = E{] Lx(s)ds | x(t) = x} (40)
t

for the stochastic process

x = f(x,u(x)) + Gv 41)

14
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where v is Gaussian white noise with spectral density matrix Z . Determination of the
stochastic optimum control law necessitates the solution of the "stochastic Hamilton-Jacobi"
equation, which is a second-order partial differential equation. The use of the quasi-
optimum control technique appears, as is shown below, to offer an effective method of
obtaining an approximate solution for the quasi-optimum control law when the disturbance

v issmall (i.e. Z issmall) and the solution to the noise-free problem is known exactly.
This application of this technique has been worked out for a simple example and a Monte-
Carlo simulation has been performed which shows that the quasi-optimum control law is
superior to the control law for the noise-free process. The amount of improvement, however,
is only modest; it remains to be determined under which circumstances the quasi-optimum

control law is worth the additional complexity.

15
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PART 1. THEORETICAL STUDIES

1.1 PERFORMANCE OF QUASI-OPTIMUM CONTROL LAW.

Since the implementation of quasi-optimum control law necessarily entails the
use of a system of greater complexity than required by the control law for the simplified
process, it is worth having an estimate of the improvement which can be achieved by use
of the quasi-optimum control law. The general problem of estimating performance has not
yet been solved, but a definite answer has been obtained for the mildly-nonlinear process
(34), with the performance index (35). For convenience, we assume that the upper limit

on the integral in (35) is @ ; this results in no real loss in generality.

Consider any control law Yy (x) and the corresponding value of the performance

index VOL(X)' From the integral definition of V = Va, we have

< ) (x’Rx + u” Qu_)
o o

But, in general, if Va is not a function of the present time t, then

dv )
d_tof=<av < > (Ax + By (x) + pf(x))
d

Where 3V /3x denotes the gradient of V with respect to x, an

(") denotes trans—
position. Thus, upon equating the above expressions for dVa/dt , the following partial

differential equation for Va is obtained:

aVv !
<axa> (Ax + Bu (x) + uf(x)) + % (x"Rx + g, Qug) =0 “2)

We now consider the following 3 control laws:

(i) Simplified Control law Yy (x) = us(x) = Q_]B’Kx (43s)

(ii) Quasi-optimum control law UOL(X)

0y = QB (kx + mu B @3

(iii) Exact-optimum control law ua(x)

0o ()= Q1B (Kx + m u+ O(u?)
(430)

17



" where K is the optimum gain matrix for the simplified process, i.e. the solution to (37)

with K = 0. Note that the adjoint vector for the exact process is

pbs B) = Kx+m bt o) (44)
and
= %
—"—‘ux ox l u=0 45)

which makes it permissible to express uo(x) as given by (430), since the maximum principle

asserts that

uo(x) = Q_]B'p(x) .

For each of the control laws of (43) we assume that the solution Va (x) exists*
and is at least twice differentiable in the parameter . Then we can expand Va ina

. 2 .
seriesin | uvpto u , l.e.,

2

Vo () = Vg o) + Vo (s + Vo, 60w + 0w, e =s,4,0 6)

o

Substitution of (46) and (43s) into (42) results in the following partial differential

equation for Vs(x), the performance attained by use of the simplified conirol law:

14

aVso avs] 2 avs2 3 -1
3 M + +O(p7) | [(A+B'Q BK)x + pf(x)]
X 0 x dx (475)
+ % [x' (R + KBQ 'B’K)x] = 0

* An implication of this assumption is that the control law p_ (x) results in an asymp-
totically stable system, unless the integrand of (35) vanishes identically along any
trajectory, since then dV_/dt <0 and V_ is positive definite which implies asymp-
totic stability. o «

18
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Equating the coefficients of u.o , B, and u.2 of (47) results in

a.vso " 1 -1
Ax + - [x"(R + KBQ K)x] =0
ax 2

(BVS]>’ N (avso>'
Tx Ax + ™ f(x)

=0
av.,Y aVv .Y
s2) % _ sl _
(ax) A x +< ax> f(x) =0
where
A=A+BQIBK
Similarly, substitution of (43q) and (46) into (42) gives
Voo . Va1 28V A -1
3 x U 3 x T h—a—x—'»{ O(H ) {Ax+u(f(x)+ BQ BTHX)]

# 5 LR 4 (x/K 4 um’, )BQTB (K pmy )] = O

2 /..tx)

and equating coefficients of uo, K, and “2 results in

aVo . 1 ~1]
aj Ax + zx’ (R + KBQ '8'K)x = 0

LAY 1 T aVv o ! 1 o
) Ax+ ) [f(x) + BQ 'B'm ] +m’ BQ 'B'Kx = 0
d x d x — Ux Hx

<8V92 . avq]>, -1 ] -1
. Ax + i [f(x) + BQ Bmp.x] +§T B&Q 'B'm XZO
Finally, substitution of (430) and (46) into (42) gives

aVoo avol 28V02 3 "o -1 2
gt TR g T O] A+ u(f(x) 1 BQ BTpx) + O(u)]

tg [XRx + (K o+ pmy o(w?)Ba e (kx + Bmy . © oW’ =0

N} —

Again equating coefficients of uo, K, and u.2 gives

aVoo s 1 -1
3V Ax +—2-x'(R+KBQ B’K)x =0

19
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(48q)

(499)

(50q)

(470)

(480)



v\ . av \’ . q
° ] Ax + ) Ifx) +BQ B'm | +m BQ 'B'Kx =0 (490)
—~Mx —Mx

V2l - Vo)’ -1 1 -1
5= ) Ax (F) + B'Q7 8'm ]+ 5 m BQ B'm +O()=0

(500)

Comparison of (47s), (47q), and (470) reveals that Vso , qu , and Voo satisfy the same
differential equation. Since each must satisfy the same condition Vao (0) = 0, they are

all equal, and given by

V =V =V = -1 rkx (K = K") (51)

o qo oo 2
This is verified by noting that if (50) is the solution then
A% oV oV
so

Jx d x dx Kx (52)

and hence (48s) becomes

~ " KAx + %x'(R 1 kBQ 'BK)x = 0

or - 2x'IK(A + BQTTBK) + (A’ + KBQT'B)K - R - KBQ'BKIx = 0

The matrix of the quadratic form in the above is

KA + A’K + KBQ '8'K - R
But by (37) this matrix is zero. Consequently (51) is the desired solution for the zero order

term, and (52) is its gradient.

Substitution of (51) and (52) into (49s), (49q), and (490) gives

av] .
Ax - x'Kf(x) = (53)

aVv
dx

) Ax - x'KIf(x) +BQ 'B'm ] +m BQ 'B’Kx =0
WU x ux

<

3
(301) Ax - x'K[f(x )+BQ_]B’m l+m BQ 'Kx =0
X X X

20



Clearly,

Vs] - Vq] - Vo] - V]

Since they all satisfy (53). Thus the first-order as well as the zero order terms using all
three control laws are equal. This is an expected result, since if Vq] # Vo] or

Vsl £V it would be possible to find a value of pu sothat V . < V . or VS <V

ol / ql ol 1 ol

which is impossible if Vo is optimum.

The differences between VS , Vq , and Vo are thus in the second order terms.

To evaluate this difference,we make use of (45). In particular, since

- o_ _3d 2 3
p(x, k) = ox d x (Voo * HVO] e V02 * Ok
- aVoo - aVo] 2 avoZ
dx ! dx H dx

it follows that

oV aVv oV
_ _ ol - ql - s
T[,l.x dx d x b %

(This also follows from (38).) As a consequence,the second-order terms in each of the three

cases, from (50s), (50q), and (500), satisfy

8V52 T

5T Ax = m f(x) = 0 (54s)
8Vq2 " 1 -1

Tx Ax - r_nuxf(x) - —2-9”)( BQ B r_nux =0 (54q)
avoZ " 1 -1

7 Ax - E\“xf(x) - -imuxBQ B ™ +O(1) =0 (540)

Now let
W=V, - Vo

be the difference between the second-order terms of the simplified and the quasi-optimum

performance values. Then W satisfies

oW Y 4 1, ol I _ -
(ax> Ax +fmuxBQ Bmux—o , W(0) =0 (55)
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The solution of this equation, by characteristics is

_17 1o,
W=z m, G, € mar (56)
where .
E(T) = el
It is evident that W is positive-definite and hence, we have established that V52 b qu .
Since V. =V__and V. =V , we have the principal result that
qo SO ql s
Vo 7 Va2 (57)

for sufficiently small values of u.

An alternative approach to the question of estimating the difference between the

performance indices of the optimal, quasi-optimal, simplified controls was also considered.
Using the theory developed in the introduction, rewrite (1),
x = f(x,u(x)) x(T) = x

in the form

x = f(x,p(x)) x(T) = x (58)

where p(x) isan adjoint vector,

f(x,p(x)) = f(x,0 (px),x))

and where 0 (p,x) is defined by (ba). The additional assumption is made that the simplified
state X is in a lower dimensional subspace L* of the state space than the actual state
space L and that if the solution of (58) starts out in this lower dimensional subspace, it
stays in L* for all time. If the initial state is in this subspace the exact control problem
can be explictly solved, in accordance with the basic assumption of this method of quasi-

optimum control.

Let Q be the linear projection operator from L onto L* . Thus Q2 =Q, Q

is the identity on L* and maps all vectors not in L* onto the zero vector. Let po(x) ,
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xo(

process using the optimum control, the quasi-optimum control, and the simplified control,

T ; pq(x) ’ xq(T) ; and ps(x) , xs(T) be the adjoint vectors and paths followed by the

respectively. Also let X (T) be the path followed by the process using the optimum control

but with initial value Qx.

It follows from the above definitions and (59) that

Xy = f(xa, Py, (xa)) xa(t) = x ¢=o0,9,s 59
and that
X =T (X, p_(X)) X(t) = Qx (60)
A possible Taylor series expansion for po(x) is
2

po(x) = po(Qx + (I - Q)x) = po(Qx) + Qx)I - Q)x + O((I - Q)x) 61)

9
aQx Po
Assume now that Qx = X (I - Q)x = £; in the new notation

ad

WPO(QX) = M(X)
From (12) and (13)
p,x) = p_(Qx) (62)
Py = P (Qx) + 5G= p QNI - Q)x 63)

Now compare the solutions of (59) to that of (60). By assumption, (60) is soluable
in closed form and thus all of its properties can be readily determined. If it can be shown
that the solutions to (59) either converge to the solution of (60) or stay very close to it,
then it follows that the solutions to (59) have the same properties. In particular, this meth-
od will sometimes allow comparison of the zeroth index of the various solutions of (59),
which gives a way of estimating the performance indices of the various processes. Also by
this method, in some cases, one can deduce that the quasi-optimal is (asymptotically)
stable. In particular, let

:x —+
"q B
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where xq is defined by (59) and X is defined by (60). Thus ﬁq is the difference between
(60) and (59). We will derive a differential equation for 8. From (59) and (63),

X 4B, =T +B, p @K +B)) + 5p QX +B )T - Q)X +B)

X)) + ﬁq(’r) =Qx + (I - Q)x

By definition, X satisfies (60), and thus by the assumption above, since X
starts in L* , it staysin L* for all subsequent time. Thus
QX (1)) = X(1) t<T

Therefore (I - Q)X(T) = L - Q)QX(1) = @Q - QZ)X(T) =0 fort =7. Wemay

rewrite (64) as

X +8_ =F(X + B, p, QX + ﬁq)) + %po(Q(X + Bq))(I - Q)Bq) (65)

Now expand the right hand side of (65) in a Taylor series about X(T) in powers
of Bq('r) , to obtain

X+ B, =Tl p@X) + 5T (X, p (QXNB, + 52T (X, p@XI 2= p, QX8

+ 22 QU - QB 1+ 082 66)
2 P, QT - Q)81 + O(6?)

We can rewrite (66) as

. _ = d—= d = 0 2
X + Bq - F(Xl PO(QX + [—a—xf(xl PO(QX) +’a_pf(xl po(xl po(Qx)ﬁ PO(QX)]ISq + O(ﬁq)

67)
Since QX = X by assumption, and X = f(X,po(X)) with initial conditions
X(t) = Qx(t),

. 2
Bq = A(T)ﬁq + O(ﬁq ) (68)
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with initial conditions B(t) = (I - Q)x(t) , and A(T) is the matrix

_ 0 9= a
AT) = 2T (1), p @X(TN) + 25T (X(T) , p @X(T)) 5 P, @X(T))
Using the definitions of H H,, and M given in section 1, it is seen that

Xp’ 'pP

A = HXP + HPPM

The required differential equation for ﬁq is given by (68). Sometimes the first-
order properties of a differential equation determine the stability of the solution. In
particular, if A(T) is constant and has all its eigenvalues negative, B is asymptotically
stable about zero [B2] , if A(T) is constant, and has a positive eigenvalue, then the solu-

tion to (68) is not stable.

If we write xo(T) = X{(T) + ﬂo(‘r) and suppose xo(T) to satisfy equation (59)
with initial values xo(t) = x =Qx + (I - Q)x , then using a similar procedure as above,

it is found that

#

N 2
B(T) = A(T)B_(T) + O(B])

©69)

Il

B(1 = (I- Q)x

Thus the differential equations satisfied by Bo and Bq are the same, to the

first order.

It should be noted that the possible initial conditions of (68) and (69) are not
the whole space but only the complement L - L* of the subspace L* . More effort is
needed to determine if the first order matrices which arise in control differential equations
such as (58) have properties which ensure that the solutions of (69) have some type of

stability conditioned on the fact that solutions start out in L - L* .

To estimate the difference y between X and xq we note that this difference

satisfies

. . . . 2 2
X =X = - = A X - X
0" %q T BBy T AMIx - x 1+ 0B + OB 70)
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¥ =Amy+ O(BY) + OBZ) , tsTsT 1)
with the initial condition
v{) =0 72)
The solution to (71) thus depends on the forcing terms O(ﬁoz) and O(/Si). In particular

T 2 2
¥(r) = [ ©(r, 9108, ) + OB €)1 ds
t

where @ is the fundamental matrix corresponding to A(T). An estimate of the forcing

term and knowledge of ® would permit the estimation of v.

If we write xs(‘l') = X(r) + /35(1') and suppose xs(f) =Qx + (I - Q)x, and
use the same procedure as used in analyzing xCI and X 1 we arrive at the differential

equation

B(r)B.(r) + O(8%)

S

B ()

1l
~
]
2
X

B.(t)

S

where B(T) is the matrix

B(r) = 55 FIX(T), p,@QX(M)) + 5=T(X(7), 5, QX(T)Q

o]

It is seen that the differential equations satisfied by BS and ﬂq are different
even if one only considers the first term since the matrices A(T) and B(T) are in general
different. It is therefore perfectly possible that Bo and ﬁq will be stable about zero,

and that Bs will converge to infinity. This fact will be brought out in the following

example.

Consider the control problem governed by
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(1) + w2 (T)

o
N~

X o
)

1= "% (T)x](‘r) + u(x(T))
x, =0 | 3)

=1
with initial conditions xo(f) =0 , x](f) =w , x2(f) =a |, x3(f) =t .
We wish to compute u(x(T)) (x(T) = 1_x0(7’) , x](T) , x2(T) , x3(‘r)})in such

T
o way that xO(T) = %f (X‘]?(T) + u2(x(T))dT is minimized. Proceeding as in the intro-
t

duction, we write (see(3)),

p
h(p r Xy U) = 70_()(? + U2) - P]XQX] + p]U + P3
h is maximized with respect to u if
__ M
U= - —
Po

Thus fi(x , p(x)) (see(58)) is

1
fO(X , px)) = 3

f](x , p(x)) = TXpXg T

— 74)
Fc, plx) =

I
o

folx, plx) = 1

Using the Pontryagin maximum principle, we arrive at the two point boundary

value problem
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exp[xs—T] - exp[T-x3]
ps,(x)=x] exp[x3-T]+exp[T-x3]

Pao®) = =1 ¥ mex,

and that

p

exp[xa—T] - exp[T-—xS]
](x)—x] exp[x3-T]+exp[T-x3] T miXg

where m is defined by (19). After some calculation, we find that

(exp[xs- T)] - exp[T - X3])2

=0 and m, .. = x 7
(exp[xa- T] - exp[T - x3])

Thus

_ . 2 2_exp[xs3-T]-exp[T—x53] 2
FO(XS ! F)s(xs)) x0T 7\ T exp [x 3 - T] -exp[T - xs3]

r -7 - -
T, p () =, = =x.x plrg T T eIl %!
1% 7 PV s s27s1 s eXP[Ks3'T’]'eXP[T'X53]

and
_ 1 exp[xa—T]—exp[T-—x3]
fo(xq ' Pq.<xq)) X0 73 (xq + X exp[x3 ST exp T - x3]

+ x

exp[xB—T]-eXP[T"X3] 2\?
q2 exp[x3—T]—exp[T—x31
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b o) =k = [ |3 T TP g
1q ' "q'q ql q2'ql  q exp[qu-T]+exp[T-xq3]

.exp[xq3-T]—exp[T"xq3] 2
+ X
explqu-T]+exp[T-xq3] q2

o, D =x,=0
20 7 Pqlig) = %g2
f3(xq , pq(Xq)) = %43 =1
with initial conditions
X0 ~ qu =0
xq = xq‘ = w
X T xq‘,2 = a
x53 = xq3 =t

Solving these equations we find that

_ g_xplT—Tl+exp|T—T| _ _
X]S(T) [exp“_” +exp | T =11 exp|-a(T-t| w

2

1-a

vV = w2 < 1 )2 |:2cu exp[~2a(T-t)] + (1 —a) exp[2(T~1)] - (1 +a)exp(2(t-T)]
explt - Tl texp[T -1t] o )
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and that

_ 2a _ 2a exp [t =Tl +exp[T~T]
X1q T P Trexp2(r- 11 T +exp 2(F = 1] exp(t - T]*exp (T =t]
X2q =a
X3q =7
2 T
Vg = . 2IGXP[1+ 40[2(1'-T)]_ T [?(r-T)]]
a 2(exp[t - T] +exp[T-t])" t exp exp

(exp[T-T] - explT -1'])3} dr

[(exP[T'T] +exp (T - 2+ (exp (T - 7] 'e"p“_”)z *2a exp[T -7 + exp[r - T]

If we let T = @, then the preceding equations simplify considerably. We have

X02=Q
xo3=‘r
w2 1
= > -
Ve = 7 (oF7) (@>-1)

Xg = expl~(@+1)(7-t)] w
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and
vV = i(] -a +°_2)
q 2 2
x]q = expl-(T-t)w
*2q =a
x3c| T

It can also be seen that X(T) is

x]('r) = expl-(T-t)|w
X2(T) =0
x3(1-) =T
The matrix A(T) is
[ 2
0 2wexp |t - Tl -—w expl2(t - 7)]
0 -1 0
A(T) = 0 0
0 0
It is seen that the solution to
B () = A(NB () 0=0,q

B, (1) = (I-Q)x(t) = £0,0,a,0]
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is
T -
'—-12— f wzaexp[t -s]ds
; .
0

B, (1)

The matrix B(T) is

0 2wexp[t-T] 0 0T

0 -1 -explt~Tlw O
B(T) = | ¢ 0 0

0 0 0

The solution to

B(1) = B(T)B(T)

S S

B (1) = (I-Q)x(1) = {0,0,a,0}
is
r2w2c|fT(f - s)exp [t - s]ds ]
wL(’r-T)exp[f-‘r]
B(T) = o
0

If xo(‘r) , xq(‘r) and xs(‘r) , which we computed previously, are expanded
out in powers of a , then it is seen that the zeroth order term for each is X(T) and the

first order terms are ﬁo('r) , Bq(r) and BS(T) respectively. The first order correction

for the performance index at = is - (w2/2)a for all three, i.e.
w2
500(‘”) - ﬁqO(w) - ﬁsO(m) -T2 ¢
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1.2 STOCHASTIC OPTIMUM CONTROL

Consider the problem of finding an optimum control law for the process

x = f(x, u) +v 75)
with performance criterion
T
V(t, x,u) = E{J L&x(T), u(T)dT + g[xM] | x(t) = y} )
t

where E{ -} denotes expectation, x = {x . xn} is the state vector,

Y
U = {u], c e, um} is the control vector, f = {f], ey fn} is a vector-valued

function, and {v} isa zero-mean, vector white-noise distrubance process with

E{v(t)'(T)} = Z8(t - T) . The state is required to satisfy the boundary conditions
©(x(T)) = 0 77)

where @ = {(,o] g e ey (ps} , s < n, and the control u may be required to be a member

of a closed, bounded set §1.

The optimum control which minimizes (76) for the process (75) satisfies the stoch-

astic Hamilton~Jacobi equation [ B3]

“57 - Min {L(y, v) + 0( (V1] (78)
ueld

Subjecr to the terminal condition

VT, x, u) = g(x) 79

where o[. is the differential generator for (75),

n n 2
Vv 1 oV
VI = Z f (y,u) + = Z Z D,, —— (80)
and
D —|DU] = GIG’ @81)
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An approximate solution to (78) will be obtained under the assumption that the
noise acting on the process is "small" (i.e., that & isa "small" matrix). Suppose T is

a diagonal matrix,

r -
0? ..... .0
Sy ;
T = 92 (82)
0o...... 02
L n |
Then (78) becomes
n n 2
—%Y=Min{L+th-a§X+%Eo§a;/} (83)
uef i=1" % 1=1" 2y}

- Stratonovich [B4] has suggested the following iterative technique for solving (83):

©)

first obtain the noise-free solution V by setting all 0§ = 0 in (83). Then use the

following recursive scheme to obtain an approximate solution:

2
(k+1) N k+1)  n o2 .2.K)
avaf = Min{L+ I F, a;/ > (-21)a Y1 e
el 1= Yi =1 ay_L

©)

is determined one must solve a sequence of nonlinear, first-order partial

(k) (k)

Thus, once V

differential equations for the controls u and performance V Unfortunately, even

for systems (75) with relatively.simple structure there appears to be no way of finding an

(1)

exact solution to the first equation for V7,

2
(1) n (1) n o 2.,0)
ve 2 1=] Y1 i=1 Yy

(1)

Quasi-Optimum Control - An approximate solution for V will be obtained by using

the quasi-optimum control technique developed by Friedland [A1]. Note that if the constants
cz /2 are defined as additional state variables then (85) corresponds to the following set

of canonical equations
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- L(Y: U*(XIP)) o 0

| 0
X = h = b = - h = - 2

of / aF r o
P f()’, U*(X,P)) X (-a-)j) p- (3‘;,) ‘2"
0 - F(y)
where x = {x., T,y 0—2—} = {pns P p _} 02/2={02/2 .

[ . 0, ’ ’ 2 r P Pol T’ Py: o) ’ 'I L4

F=1avO/82, o a8y,

= - V/ax, . p, = - 3V/aT, P, = -93V/dy,

Po

and for notational simplicity we have used V = V“).

given by

2
h =pp+pol +pof - (0—2—)'F

and

hix, p, u*) = max h{x, p, u)
u€

The following boundary conditions apply at the terminal time T

xO(T) = minimum pO(T) = -1
free for T fixed
JUIE p (1) =
0 for T free
©(y()) a0 PY(T) =o'
o?/2 p (1) =0
ag
where
¢=[3<,DL/8)'J.] t=1,2,...,8; J=1, ..

and X is an arbitrary s - vector.
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2
.. ,on/2},

2

_ o
Pe ™~ aV/a(—z—)

(87)

The Hamiltonian function h is

(88)

89)

(90)

., n (91)



If the optimum control law for (85) can be expressed as
u* = fx, p(x)) (92)
the approximate solution is written as
u = flx, P(X) + M(X)§) (93)

where X is the state of the noise-free system, x = X + §, and the correction matrix M

can be obtained with the aid of the auxiliary system

& = Hypl * Hppv

. (94)
b= HyxE - Hpxd
where
» = M§ (95)
and where the coefficient matrices HXP PR HXX are matrices of second partial

derivatives of the Hamiltonian of the exact problem evaluated at x = X. The boundary

conditions for (94) are

®[E(T) + X(T)dT] =0
$(T) + PT)dT = &'n (96)
X'y = Pe

Derivations of (94), (95), (96) are given in [Al],

This approach will be applied to the second-order process

X, =u, tv
1
A ] (7)
X TV TV
where the controls Upsu, are subject to the constraint
ol = (98)

and the random disturbances v, and v, are zero-mean white noise processes with variance

] 2
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E{vt (f)vz‘, m}-= 03 6(t-7), L =1,2. The problem is to choose u; and Uy to

minimize the expected time to hit a circle centered at the origin. Thus the performance

criterion is the conditional expectation

:
v =©€{f dd Ix (1) =y, , %,(1) =y} (99)
t

2

where t denotes the current time and T is the first time that the random process {x] ' x2}

hits the circle S,
23

2 2
S={x],x2; X3 +x2=R (100)
The stochastic Hamilton-Jacobi equation for this problem
02 2 02 2
0= min2 []+u]g—\;—+u2—g—:’—/— +_2]_3_§\_/+_22_ —;/} (101)
v +u2 =1 1 2 ay] ay2
Thus the "optimum" control is given by
avV/ay Vv / dy
- - ‘ - - 2 (102)
°) av2 ,avz2E 2 V2  av,2 %
l(—a——) ’(—a"—) | I(é_) 1r(”a‘-‘“ |
4 Y2 4 72
and the "optimum" performance satisfies
2 2
L © 2 c 2
0:]-[(_aa_v)2+ g_v)2]2+_2]_ 82\/ 2_2_8_2\1 (103)
4 72 dy ay
1 2
subject to the boundary condition
- 2 2 _ .2
V(y], y2) =0 for Yy typ = R (104)
The canonical equations corresponding to (103) are
. 2 2.-%
yp =pylp) vl T
. 2 2. -
Y2 = Polpy * byl i
. (105)
£(69 =0
(52 =
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and aF oF

P15y, T 20Ty, 0y
oo 1,2 2%
P2 3, 213y, 27y,
_ oh  _
A o=- 2)"F1

ao]

\2 ,
)‘2:'_@2—:42

a(f:a)

\

where

v/ 3y, xt=av/a(c§/2) L i=1,2

Pt
The solution \—/_(y], y2) to the "noise-free" problem
0=1 - [(a\'//ay])2 + (8\7/6)/2)2]%

is well-known and is given by

2. %

= 1,2
Thus, PL = + 8\7/8)/7; are given by
_ 2, 2~%
- 2, 2,-%
P2 - )’2()’] + Y2)

From (106) it is seen that PT and P, are constant in time and thus from (105),

2

X,(1) =y, ~ly, 2+ Hr -

Xy (1) = vy = lyyb% +y2) BT - 1)
and
x2(r) + 321 = 162 +y2) 2 - (r- 1)
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(110)
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\t_\\\g

The quasi-optimum control law is found by letting

0'2 0'2
v 1 2
By, Py 4 mglm) +my ()
> 2 113)
v 1. %
3y, - Py 4 myg(5) + my ()

shere the correction terms mt/. are determined from the solution to

£ = (11 X /00 1 (X Xy /),

E, = (X X /N, 4 (1 + X2 /)y,
£,=0, &,=0

- 2,5 2 2, ,5

by = - 0, @X5 - X0) /)8, + BXC /O)E,

o 2,5 2 2,,5
by = BXX5/P)E] - (,@X] - X5 /)€,

<«
E-N
n

2 2,5, . 2,5
- (X, 2%, - X])/r V&, 1 BX X /r )€2

with boundary conditions

o0 = Ry /e, b,(0) = 2Rny, /;
b0 = - dT( - 2 /RO /R
- 2,2
8,0 = -dT(1 - y2 /RO /R (115)
0=

[y £,(T) + y,&,(M1/r +dT

0 = Iy ,0) + v, b0 /r = (2/D)E, - (F/DE,

2 2 . .
where r = Yy + Yo - Since £3 and E,4 are constant, it is a simple matter to integrafe

(114) and to apply (115) to obtain
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r
r2 2 3
y‘yz[_‘-l] A
™4 3 'T TR )
13 r
3 116
2y.y2 y (116)
e AT R P
M23 3 r TR 4
3 r
2
_ 20 32
M4 3 R

2 2 02 2 2 3
ov . 0,2 3 2 "2 P2 0 1
Ey2 r 2 r3 r R 2 r3 r R ’_4

(117)
02 2 2 3 q
v _yz_+__1_[___y?y_](_]_-_]_)+_y2_|+_2[ 721 2 - 2y
dy r 2 3 r R 4 2 3 r R
? r r r

It is interesting to note that in the symmetric special case, 0? = Ug the above control

law reduces to the exact optimum control law which can be derived directly from the solu-

tion of (103) with of = 0%.

By using the quasi-optimum solution as the input to next stage of the iteration
(84) (i.e., by compounding the approximation) a sequence V(k) ; u(k) is generated. The
question of convergence of this sequence to the optimum solution has not yet been thorough~

ly investigated. However, in practical problems one would expect that the first iteration

should yield a satisfactory control law.

We have obtained a Monte-Carlo simulation of the performance of the above
second=order process using both the quasi-optimum and simplified control laws. For all
cases considered 0? = 0, the initial state was (5,5), and the average time to reach a
circle of radius 1.0 was recorded for a 10 -member "ensemble". Table 1 contains the com-

. 2
puter results for various values of 9,
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TABLE 1
AVERAGE TIME TO REACH UNIT CIRCLE

Ug Quasi-Optimum Simplified % Improvement
.1 5.679 5.682 .053
1 6.162 6.208 75
2 7.206 7.235 .40
2.25 7.117 7.622 7.1
3 8.629 8.953 3.8
4 9.316 9.414 P.1
4.5 9.141 9.204 .68
4.8 6.977 6.611 -5.2
5 - - -

The fact that the expected hitting time for both the quasi~optimum and simplified systems
2

does not increase monotonically with increasing 05 indicates that a larger ensemble
should probably be used in the performance evaluation. The quasi-optimum control seems to
provide an improvement which has a maximum at a value of G% between 2 and 3. At
Gg = 4.8 the simplified control law provides better performance than does the quasi-

optimum control law, and for g, = 5.0 neither system can reach the unit circle. Since

2

the improvement in performance is not striking in this example further study of stochastic

quasi-optimum control is required.
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PART 1. APPLICATIONS

In order to verify the validity of the quasi-optimum control technique and to
obtain some qualitative insight into some of the difficulties and limitations of the method,
a number of "practical” problems to which the technique appears to be applicable were
studied. The word "practical" is enclosed in quotation marks here to emphasize that even
the equations (1) for the exact model entailed a considerable simplification of the actual
physical behavior of the process; the simplified model (10) is a still further simplification.
In all cases considered the further simplification led to a lower-order system of differential
equations. In these applications, one of the devices employed as a basis for using the
quasi~optimum control technique is to represent parameters which are small by additional
state variables x; with the differential equations icz./ =0. The simplified problem is then
the same order as the original problem before introduction of the additional state variables,

but is simple enough to permit an analytic solution.

No theoretical difficulties were encountered in any of the examples studied;
the algebraic calculations, however, although straightforward, were quite tedious and

involved. Consequently progress was slow and calculations had to be checked frequently.
The following problems were considered.

1. Three-Axis Attitude Control of a Space Vehicle

2. Minimum-Time, Bounded Acceleration Rendezvous in a
Central Force Field

3. Aircraft Landing Problem

In the sections below the equations for each problem are numbered according to

the format (L - 1), (¢ -2), ..., where i =1, 2, or 3 according to which of the

above problems is under discussion.
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2.1 THREE-AXIS ATTITUDE CONTROL OF A SPACE VEHICLE

The first application study is that of controlling the attitude of a space vehicle

in which the gyroscopic coupling torques are small but not negligible.

Problem Formulation - The equations governing the components of angular velocity along

principal axes of the vehicle are

1,/,k=1,2,3 in cyclic order (1-1)
L#J #k

. . th . . .
where I?./ represents the momont of inertia about the L— principal axis, W, represents

‘;’a = [(I_]_ ) w W+ f?.l]/_r?,/

. th .
the component of angular velocity along the i— principal axis, c, represents the mo-

ment arm of jet control, and FL represents the thrust of jet control,

I, 01 = M, t=1,2,3 (1-2)

Three additional coordinates required to completely describe the vehicle attitude are the

Euler angles [6] , 92 , 63] defined as in [B5] :
. cos 93 sin 83
9 6 " Cos 0 0
cos 6, cos 8,
92 = sin 93 cos 93 0| w (1-3)
_63_J _— tan 92 cos 93 tan 92 sin 93 1 |

Thus (1-1) and (1-3) describe the vehicle attitude motion.

We will assume that the angles 8, and 83 are sufficiently small throughout

the control interval so that the matrix in (]-:23) becomes the identity matrix. Then the eq-
vations of motion reduce to
t,J,k=1,2,3
LA EK
{1-4)

e
1

(L, = L) w,w + ey 1/,
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We will define the state variables

x0= t
x, = 1,8, i=1,2,3 (1-5)
xp 43 = Lywy

The cross-axis inertia rafios (IJ - JL)/IJIk are assumed to be smail but nonzero, and are

represented by additional state variables
i i k=
g1 = (1:]_ —_Z'k)/IjIk ok =1,2,3 (1-6)
LA AK

Hence the state equations can be written as

;‘o =

Xy =%y

;<2 = %

X, = X

3 6 (1-7)
Xq = XogXgXg + k]u](t)

9°475
X = ;<8 = ;<9 =0
where ki, = CLML and
lu, ] =1 t=1,2,3 (1-8)
To simplify notation we will assyme that k. = k_ = k_ = 1.

1 2 3

The problem is to minimize the time required to reduce x “ e e X to zero,

1 6’
i.e., to minimize xO(T) subject to the constraint (1-8), where x; M=0, it=1,2, «..,6.

The Hamiltonian for this problem is
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h =Pg + PyXg T PyXs T Pgxg t PgxeXe Py,
(1-9)
T PsXgXgXy T PgUy * PeXoXg¥s T Pgl3

Maximization of h with respect to Uy Y, and uq results in the optimum control law
v, =sgn(pz+3) t=1,2,3 (1-19)
where the adjoint variables Py s t=0,1,..., 9 satisfy

pozp]:P2:p3:O

Py = “P1 T PsXgXg T PXo¥s

Ps = Py PgXr% T PeXoXy

Pe = "P3 T PgXy*5 T P5¥gXy a-11)
P7 = "P4*5%6

Pg = "P5%6*4

Py = "Pg*s%s

Simplified System - Suppose the cross-axis inertia ratios are zero (x

5 = xg = %9 =0).

Then from (1-7) the three axes are uncoupled, and the optimum control law for each axis

can be obtained from the well-known solution to the Bushaw problem [A2]. Thus we select
XZ[XO,X],...,xé,O,O,O] (1-12)
as the state of the simplified problem.
The Hamiltonian for the simplified problem is

3

H=P, + % P. x. + T u, P, (1-13)
0 i=1 171+3 1=1 L 1+3

48



[

where P = [PO, P] P Pé, 0, 0, 0] isthe cdioinr,vec’ror-For the simplified prob-
lem. The maximum principle applied to (1-13) yields the optimum control for the simplified
problem

u, = sgn(PZ.’+3) i=1,2,3 (1-14)
where the adjoint varables satisfy

Po = 0

P, =0 t=1,2,3 (1-15)

Prez =Py

By integrating (1-15) we find that

u; = sgn [P(i +3)0 - Pllof]
_ (1-16)
Y S = P/ P
U, . t>1, i=1,2,3
where
Uy =san (Pryigy0) =21
Substituting (1-16) into (1-7) with Xy T Xg T Xg = 0, ond integrating to the terminal
time T?L , results in expressions for x?./(TZ.’) and xz’,+3(Tz',) as functions of T'L Ay and
the initial conditions. Solving simultaneously for T“L and t yields
2 %
X, X . -
- (+3)0 (1+3)0 _
t; U, + 5 U'LXZZO (1-17a)
t=1,2,3
2 %
X,, X,
X3 (i+3)0
Ti, = Ui, + 2 5 - UZ-IXI.’0 (1-17b)
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By using (1-13) and (1-17a) we find the following expressions for the initial adjoint vari-

ables in terms of the initial state variables:

Yy
Pro = 2 % (1-180)
(1+3)0 U X
2 10
and t=1,2,3
X
1 (t+3)0 -
P30 ~ U, 2 2 (1-186)
X
(T+3)0 - U. X
2 1710

Since the initial state is arbitrary, dropping the subscript zero in (1-18a) results in the
general relations for the adjoint variables in terms of the state variables. Substitution of

(1-18b) into (1-14) leads to the well-known control law for the simplified problem.

If the cross—axis inertia ratios are not zero, however, then this control may be
unsatisfactory for the original problem. Thus we will modify this simplified control law to

take into account small, but non-zero, cross-axis inertia ratios.

Quasi~Optimum Control Law - In accordance with the procedure outlined in the Introduc-

tion, the quasi~optimum feedback control law is given by

vy = sgn Pyt myx; +mygxg T myexo)
Uy = sgn (P5 + Mm%, + MaXg + m59x9) (1-19)
ug = sgn (P + mgox, + mgexg + megxo)

where P4 , P5 . P6 are the adjoint variables of the simplified system defined in the last

section and the m; 4 are components of the correction matrix M. The correction matrix
is obtained by finding the fundamental matrix for the auxiliary system where the coefficient

matrices are given by
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¥S

ST, T, T, <T, T, T,<T T,

£,1) =0 £, 1) = 0 £,T,) = 0

£4T) = UydT, £5Ty) = UydTy bT3) = UgdTy

oy (Ty) =0 v (M) =0 v, (Tg) =0

¥a(Ty) =0 1«3(T2)=0 v,y =0

ws(T]) = PyT, v,0,) = P.dT, L4(T3) = PdT,

0, (1)) = PydT, L 0,)) = Pl 0g(Ty) = P,
5,00 = BT XGTXT AT, 0o T) =0 )T =0

vg(Ty) =0 vg(Ty) = P5(Ty)X, (Ty)X,TphdTy vg(T3) = 0

¥y(Ty) = 0 ve(ly) = 0 vo(Ty) = PoTIX, T3)X5(T3dTy

TABLE 1-1

BOUNDARY CONDITIONS FOR
QUASI-OPTIMUM CONTROL LAW




and

0 =Py + Pobg * Poby * PyXoXely + PeXXifg + FeXgXsbo * Xy
t Ry * Xhy t Uppy + Ughs * Ugly
where the last equation is evaluated at time t and is applicable to each of the three

cases. By applying the appropriate boundary conditions defined above we find that
-LE(1) = Ny (1)

where, for the case T] <T1,, T

2" 3

(0 0 0 o, 0 0 @ ®18 P
0 0 o0 0 0o 0 0 0 0
0o 0 o 0 0 0 0 0 0
0 0 0 -R/U 0 0 vy P/ Y59
L= 0 0 0 -P/U, 0 0 vy, Y68 P49/ Y,
o 0 o X X X X X X
o 0 o X 0 X X X X
0 0 X X 0 X X X
|0 0 o Pl Py Py PXX, PXX, PoX (X
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and

i 7
<p” 0 0 P14 0 0O 0 0 O©
0 1 0 0 0 0O 0 0 ©O
0 0 1 0 0 0O 0 O O

N =|-Pp, /U 0 @ -Po,/u 0 1 0 0 0
X X X X X X 1 0 0
X X X X X X 0 1 0
X X X X X X 0 0 1
X, Xg X, u, u, U 0 0 0

where v5 = Boy = P05 /Uy Yy = By~ PP/ Uy

V59 = Bsg = PpPye/ Uy s and vug = Beg - Pyoue/ Uy
Upon solving for tbd , qbs , tbé in terms of E7 , €8 ) and §9 we find the required correc~

tions m The terms labeled X are not required in this calculation.

tj°
d) To account for all possible permutations of the t, and T,]" the relationship

between the switching times t t2 , and t. is determined and a transformation b=t

J
<t < fa is always main-

1’ 3
TL - Tj , X?.J - X,, PZ', - Pj is made such that the order 'r]
tained. Based on the above ordering, the gains m, ; are applied to the corresponding

X Then the inverse transformation is used to re-order the resulting controls u, to obtain

the input vy which is applied to the dynamical system.
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The gains My 5

Whenever T] < T2 , T3 we have

are given as foilows:

P ® P 2
-_2 o7 -_3 _ 17
Mgz = : (047 T, - f]) Bsz Mgz U, (047 T - ’r]) Bez
mgg = 0.0 Mg = “Beg
M5 = “Bsg mgo = 0-0
) TV AR A
ARV SR 72
[PoU, + PoUs1 /Uy + By, Uy + B, Ug = P XX
N ®18
Mg =TT X Xa o T Usbes ~ PsXeXy]
117 % 1
N P19
My = Tt 7 X Xa 5+ Yabse ~ PeXyXs
17 %y 1
Whenever T2 < T] , T3 we have
my; = 0.0 Mz = "Bz
P ® P ®.
1 28 3 28
Mo = 7 (Peg ~ —) - B M =7 (Peg =~ 5——) - B
480, P58 T T - 48 68 T, %58 " T, -1, ~ Pes
Mao = By Mgg = 0.0
t o
2 27
m_, = [X +U.B,_ - P.X_X]
57 Uy, 7 X 50y ¢ dber T P46
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NS SUN SV :: B
58 U2r2 + x5 5 Pro 58 T2 - ’r2
[PU +PU3]/U +B48U] + BygUs P5x x4]
t %
2 29
59 Uyt, + X 50, 1497 67475
For T3 < T] , T2 we have
my; = 0.0 ms7 = “Pez
m48=_B48 m58=0.0
P @ P
1 39 2
My = (0, - ) - B Moy = T (0
49 7T, Yoo T T 0y 49 597 U, P69 T T
t %)
3 37
m,_ = [X +UB.. - PXX]
67 T Ugig * X, 16 0y 2757 T 47576
f ©
3 P38
m,, = [X — +UB,, - P.X,X)]
68 " Uy * X, 6 0sp 1748 PsXe%4
' (X, 239 (o - P39,
69 " gy 7 X, 6 Dy 69 " T, - 1
[U Py + UpPol/Ug + UpBgg + UgByg = PeX Xl
The terms (‘Dij , Bz’,j are given as follows:
Case]:f]<T]<f2,T]<T2,T3
Oy = 22U (T - 1)/ Py
P17 = Yss 1/]2 T XUy T XUl Ty 26 * Kse! 1/2
B 3 2
Oy = UpaTy/3 + (XgUy + X U)T /2 + X T,
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U

Y 1 3 1 i 2
‘pla’zT](Tl = 1)l UgPyty = 5 (UgPy = X Po)ty = PoXh,]
U

0. =2 (T, = t ) U P - L (UP, - X P - PXot]
19 P~ Ml YRt T 7 R = T - Rkt
0. = P.UITS/3 - T2t /2] + P.XIT2/2 - T.t.]

57 = Y3t 1 156 T 1

B = P.UITS/3 - T2 /2] + P.X_[T2/2 - T.t.]

67 = Pl Ty 1 1 %5l T 1

T? 2 *? 2 f3 2 2

Bgg = UiPgl-—g + Tity = = + 17ty = 20 Ttg + 5 T0) + X, Po(T)/2 - Tht)

t
2 2.2 2
+ ity - 2’r]f2T] +-7T]) + P2x4(T]/2 - sz])

3
t

3 2 1
PZU](—T]/3 + Tt - 3

ﬁ68 11

CdSeZ: f2<T]<f3l T-I<T21 3

01y = 20Ut (T - 1)/P,

_ 4 3 1.3 4 3
Py = U23[ T]/12 + T]’r2/3 T]f2/3 + f2/6] + X5U3T]/6

3 2 2 3 2
+ X6U2l-T]/6 + T]t2 - T]fz + ’r2/3] + x56T]/2
T 2 3 2, 2 2
047 = Upgl=Ty/3 + Tty = £5/3] + UX,[-T2/2 = 1 + 20T + X U,To /2
* XXy
Y, f? 12 *?
Prg = ZT](Tl = FUgPy (= = 5 1)) + Py X (5= = 41,)]
Y, f? 12 *?
Pro = ZT] (Ty = £IU Py (5= = 5—158]) + PeXg( = £;15)]
T? r]Tf Tf
Bsy = PiUsl7~ - —5—) + P X (5 - (T))
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3 2
1.3 2 b 1 2 L
By = UPl-3 Ty + Tity = 3 51T = 200,T, +t 1‘2] + P Xl - Tty
1 3 Tf 2 13 T?
Bso = UpPal-7 Ty + 13—+ 1T = 20157, - =t “ tgl + PaXyl— = Tytgl
1.3 f? 1 2 2 T?
ﬁ68 = P2U][—§T] oy +—2—T]f2 +f]T] - 2T]f2f] +t t ] + P X [ ]2]
Cc:se3:f2<T2<f3,T2<T],T3
0y = ~2Upty (T, = 1)/ P,
4 3,. .3 4 .3 2 2.3
Pog = U]3[ T2/12 + f]T2/3 T2f1/3 + r]/6] + X6U1[ T2/6 + t]T2 Tzfl +f]/3]
+XUT/6+X 12/2
49377 462
Oy = U -To/3 + 012 = £3/3] + XU [-T2/2 + 20T, - 3] + X UT2/2 + X, T
58 = UyslTy 179 = 6911 T, olp 7 H 4937, 46'2
Y, ! 33
Py = 2‘2—”2 =t U Pally = 1)) + 1) = 5 (UP, = X Po)
2 2
[(fz-f]) +r]] PXt]
Y, ] 33 2 2
Py = 2_92‘ (Ty = NUsP (511 = 1)) + 5] = oty - 1))7 + 1))
) 1 2.2
P XgPy (gt 1) A - )]
Bag = UsPol 3-To = - Tot,] + PXIT2/2 = 1,T,)
48 = Ushhl 3T, X6 foTs
B =PU(—T3/3+T2f—t3/3+f2f—2ffT +fT/2 +Px(T/2 )
68 10Ty 2 T 4 1% 4 tT5
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_ 3,,_ 2 2,
1367 = P]UZ[T2/3 T2f]/2] + P]X5[T2/2 th]]

_ 3 3. 2 2 2 2,
B 49 = U2P3[-T2/ 3 - tz/ 3+ T2t2 - 2r2r3T2 gt + t3T2/2] + P3x5[T2/2 f3T2]
Case 4: t3 < T] < T2 ’ T3

0y = 203t (T, - 1)/Py

P17 = U23[T';’/12 - T?(t3 + f2)/3 + 2Tft2f3 + T](fg/3 - 2f21'§ - 2/3) - rg/é
+ 2, 05/3 +5/6] + U X [-T3/6 + A, -T2 /3 + U, 1/6
+ Ty - T 13/ * XT3 /2

Opr = UZ(T?/3 - T?(f3 + t2) + 4T]t3f2 + tg/S - 2t2t§ - fg/S)

2 2 2 2
+ X6U2(-T]/2 + 2T]t2 - rz) + x5U3(-T]/2 + 21'3T] - t3) + x56T]

= 3, . .2 2, _
¢p]8~2U](r] f])[P2U3(t]/3 f2t]/2)+P2X6(i']/2 f]fz)]/P]

B ) 3,, . .2 2,
Oro = 2U (T, = £)[PU, (1]/3 = 1417/2) + PaXot7/2 = 15001/ P,

n

3 2 3 2 2

P]U3(-T]/3 + T](f3 + f]/2) - 2t]f3T] - t3/3 + t]fs) + P]xé(T]/z - T]i'])
B, = PU(-T3/3 + T2(t, + 1t /2) = 24.t.T+ - 15/3 + t.£2) + P.X_(T2/2 = T.t.)
&7 = PU(-Ty 1ty * 4y ey ~ ifg) * PyXs(Ty 1t

_ 3 2 ) _ .3 2 2
Bso = P3U]( 11(3 + T f3/2) 2t]f3T] f]/3 + t3fl) + P3x4(T]/2 - T]f3)

3 2 _ ) 2 2
P2U]( T]/3 + T](r] + f2/2) 2t]f2T] t]/3 + fzf]) + P2x4(T]/2 - T]tz)
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Case 5: f3 < T2 < T], T2

Py = "2U (T, = 1))/ Py

_ 4 3 2 30 02 3, 4
Ppg = U]3[T2/12 - T2(f3 + f])/3 + 2r]r3T2 + Tz(r3/3 2f]f3 t]/3 r3/6
3 4 3 2 2 3 3
+ 2f]f3/3 + t]/6] + U]xél-Tz/é + th] - T2f] + r]/3] + U3x4[—T2/6
2 2 3 2
+ T2f3 - T2f3 + r3/3] + X46T2/2
_ 3 2 3 2 3 .
Prg = U]3[T2/3 T2(’r] + t3) + 4’r]f3T2 + t3/3 2f]f3 - ’r]/3] + X6U]( T2/2
2 2 2
+ 2r]T2 - r]) + x4U3(—T2/2 + 2f3T2 - r3) + X%T2
U2 3 3 2 2 2
®pg = 2—F;2—(T2 - f2)[P3U](—f2/3 - r]/3 SR + f3f2/2 - 2t]t2f3 + f3f])
2
+ P3x4(r2/2 - f2f3)]
o =2—Ul(T C EPUL(/3 = .42 /2) + PX, 62 /2 - b.t)]
27 P2 2 27 °173V2 12 17642 12
B = PU-TS/3 +T2(r, +1,/2) - 2Ttot, - £5/3 + +.42) + P.X,[T2/2 = T.t,]
48 273 2 23 2 232 3 2'3 276 2 22
B 3 2 _ _ .3 2 2
B68 = PZU][-T2/3 + T2(f] + ’r2/2) 2f]f2T2 f]/3 + fzf]] + P2x4(T2 T2r2)

B = P U-TS/3 + T2 +1./2) - 2Tt 4. - 15/3 + +.42] + P X [T2/2 = T.t.]
67 1720 2 272 1 212 2 12 175" 2 2'1
B =PU|—T3/3+T2(r +1,/2) - 2T t.t —’r3/3+’rf2]+PX(|'2/2—Tf)
49 372" 2 2Y2 3 223 2 32 3752 23

Case 6: t, < T <T],T

3 3 2

Pg3 = “2Ugta(T4 - 13)/ Py
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3

_ 4 2 3 2 3, .4
Py = U]2[T3/12 - T3(f] + fz)/3 + 2t Ty + T3(r /3 -2t 1o f]/3) f2/6

3 2 2
+2ff/3 +f/6]+U 5(-T3/6+T3f1 3]+1‘/3)+Ux4( T3/6
2 2 3 2
+ T3t2 - T3t2 + ’r2/3) + x45T3/2
_ 3 2 3 2 3 2
Ogo = U]2[T3/3 T3(’r] + f2) + 4t2f]T3 + r2/3 21']?2 - ’r]/3] + X5U1[ —T3/2
£ 20T, - 1]+ X UL[-T2/2 + 2Tt = £2] + X, T
13 ] 472" '3 32 2 453
—2&3—0 -t)lPU(-f-3/3—f3/3+ft2+ft/2 2t tat +rr2)
P37 = Py 37 31723 2 2'3 3 123 " "2
+PX5(t3/2 3)]
=2U—3(T —l‘)[PU(-f3/3~f3/3+ff2+f2t /2 - 2ttt +1'i')
P38 P, 3 3271 1 13 7 1372 1'2'3 1
+PX4(r3/2 f3’r2)]
B, = PUL(-To/3 + Ta(t, +1,/2) - 2T 0.t = 13/3 4 ) + PX,(T2/2 - Tat)
48 273 '3 3'3 2 323 3 32 2763 32
_ 3 2
;367— U2(—T3/3+T3(f +t /2) fof3 f/3+f )+P (T3/2 ]3)
B =PU(—T3/3+T2(t +t.,/2) - 2Tt t —f3/3+ff2)+P (T/2
49 372" '3 32 3 323 2 32 33
B .o = U(—T3/3+T2('r +1,/2) - 2Tt ¢ t/3+t )+chr/2 )
59 ] 3 31 3 313 3743 33

It is important fo note that when (1-17) and (1-18) are substituted into the
above expressions for at’j and B?',j , the quasi-optimum control law is an explicit

function of the state of the vehicle and is thus a feedback control law.
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FIGURE 1.1 STRUCTURE OF QUASI-OPTIMUM CONTROL SYSTEM




The resulting feedback control system has the structure shown in Figure 1-1 .
Using the simplified control law indicated by transformations F] p F2, F3, the adjoint
variables P, P5, P6 are determined from the measured angular positions 61.’ and vel-
ocities w; . Each nonlinear correction is applied to the appropriate amplifier whose gain

depends on the cross-axis coupling. Thus the output of the ideal switch functions provides

the physical realization of control law(1-19).

Performance with Quasi-Optimum Control Law - To evaluate the effectiveness of the

quasi-optimum closed-loop system compared to the simplified system, the transient response
of both systems was obtained by means of a digital computer simulation. Figures 1-2a and
1-2b correspond to the same initial angular positions and velocities but with cross-axis in-
ertia ratios that differ by a factor of 10. It is clear from Figure 1-2a that after 8 units on
the time scale the quasi-optimum system has reached the origin in 3~dimensional space
whereas the simplified system requires 11 fime units to reach the origin. The figure also
indigates that the transient response of the quasi-optimum system undergoes smaller over-
shoot on the X1 and Xy axes, but requires more time to null the position and velocity of

the third axis.

From Figure 1-2b it is seen that, because of the increase in the cross-axis coupling,
both the quasi-optimum and simplified systems require more time to reduce all of the angular
position and velocity coordinates to zero. As before the quasi-optimum control law results
in a more "damped" transient response than that of the simplified system on the %y and
Xy axes. This improvement of performance is again accompanied by an increase in the

time required for the quasi-optimum control law to bring the coordinates of the third axis

to the origin.

Similar results are obtained for initial conditions shown in Figure 1-2c. Thus it
would appear that the quasi-optimum control law provides a generally smoother transient
response and reduces the coordinates of two axes to zero in a smaller time interval than

does the simplified control law.
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66




2.2 MINIMUM-TIME, BOUNDED ACCELERATION RENDEZVOUS IN A CENTRAL
FORCE FIELD

This is an extension of the minimum-time bounded acceleration rendezvous in
free space problem which was considered under Contract No. NAS 2-2648, [A1l, A4] wherein
it was assumed that the gravity field was not significant and hence was omitted. In the

present application a central gravitational force is considered.

Exact Problem - It is assumed that the motion of the target vehicle is known, that is
A (t) and ¢f (t) are specified (see Figure 2-1). The mation of the vehicle with respect

to the target is defined in a target-referenced polar coordinate system as follows

RS ) 2-1)
df2 dt r r

d2<b dr do
r?+2 —&-a":(]f—gf (2—2)

The forcing terms on the right hand side can be expressed as

a = acos 6
2-3)
a =a sin 6
[ cos CDV cos de i
9, cos @ sin ® r2 - r
v t
=p
sin d)v sin ¢'t
9, -sin ® cos @ 5 -
] r ry ]
. . . . 2
where a is the (constant) thrust to mass ratio and [ is the gravity constant (= goR0 ,

go is the gravitational acceleration at the surface of the attracting body of radius RO) .
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To apply the quasi~optimum control technique a new set of variables is defined

as follows:

T x3 = rdD/c
r/a Xy = ¢
= r/c x5 = #/c

(2-4)

The constant K/a is represented by an additional state variable X which, in

the simplified problem is assumed zero, i.e., the simplified problem assumes the absence

of a gravitational field.

In terms of these new variables, the equations of motion (2-1) and (2-2) become

xn =1
0 X2
. 3
% ? + uy - x5h]
%2 7%
XX

. 173
X3 % + uy - x5h3
. =3
X4 X,
>'<5 0

where u; = cos e, u, = sin e,

- ax, +rtcos(x4-¢f)

t

2
I [a x22 + 20x2rrcos(x4 - Cbt) + rz] 32

T sin(x4 -0

)

f

h3=,
2

2 2 2732
[a + 2ax rfcos(x4 - CDf) + T, ]

+
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(2-5)

cos(x4 - C‘Df)
r2
t

sm(x4 - CDf)
2
f




The problem is then to force the system (2-5) from any initial state to the origin

of the state space in the shortest possible time T, i.e., to minimize xo(T) subject to the

constraint
u]2 + u22 =1 (2~6)
The Hamiltonian function for this problem is given by
2 XqX X
h = + -x—3+u - x.h. ) + p,x, + - ]3+u - x:h +p—§ @2~7)
Po " P\, %1 T s T P T RS X, 277573) P4’y

Maximization of h with respect to u. and u, subject tothe constraint (2-6)

1 2

results in the following steering law

p p
v, = ! - S (2-8)

] 7 2V\1/2 2 72\ 1/2
(p1+P )/ (pl+93)

3
and Uy along with the condition that Py = -1 in

Using these values of u

1
the Hamiltonian, yields
2

_ 2 2% *3 o [ 3,
h=-1+(py +p3)~ *p (?2_ 'X5h1>+'°2x1 '°3< % *xgha) + 1y X 2-9)

Simplified Problem - Suppose that the initial tangential velocity of the vehicle with re-

spect to the target and the gravitational field of the attracting body are both zero. Then
clearly, the optimum solution is to apply the vehicle thrust along the initial radius vector
pointing either toward or away from the origin in accordance with the well known solution

for the minimum time double integral plant (Bushaw's Problem).

If both the relative initial tangential velocity and gravitational attraction are
suitably small, it is reasonable to use the solution of Bushaw's Problem as the basis for an
approximate solution fo the exact problem. Thus we select as the state vector of the sim-
plified process

X={x0,x],x2,0,0,0} (2-10)

"0




Then £ = {f;’o, 0, O, Xar X4s xs} where F,O is the approximate change in the performance

index due to the simplification. For the simplified problem, the Hamiltonian is

H = Po + P]U + PZX] (2-11)
where P = {P_, P], P2, 0, 0, 0} is the adjoint vector in the simplified problem. Maximiz-
ing the Hamiltonian subject to U = £ 1 gives

U = sgn P](f) (2-12)

The state and adjoint equations for the simplified problem are
X0 =1 P0 =0
X] =U P] = —P2 (2-13)
X2 = X] P2 =0
Integration of (2-13) yields
XO =t PO = -1
X] = X1 (0) + Ut (2-14a) P] = P] (0) - P2(O)f (2-14b)
x2 = x2(0) + x] (O)t +Uf2/2 P2 = P2(O) = constant
Eliminating time from
x](r) = x](O) + Ut
X,(1) = X, (0) + X, (O)f + Ut*/2
gives the switching curve for the simplified problem
%1%
X2 + 2 = 0 (2"]50)
X] X]
Thus the control is U = - sgn X2 + > . (2-15b)

1




In the event the argument of the sgn function is zero, it is indicated that the

vehicle is on the switching curve and U = - sgn (X2) .

Substituting (2-12) into (2-14a) and integrating to the switch time fs and terminal

time T gives

X](f) = X](O) + Ufs
s ) 2-16a)
X2(ts) = x2(0) + x](O)tS + Ut /2
X (M) =X (t) - UT-t)
1 1's 3 (2-16b)

_ - 2
Xp ) = Xy(t) + X, 4T = 1) = U - 1)7/2

Solving simultaneously for T and g and utilizing these along with the
Hamiltonian (2-11) results in the following expressions for the switching time, terminal

time and initial adjoint variables.

. P.©)
to= |- X0 + 7,0 U =+ (2~17a)
i A 2
- -
- 2
T=1-%/(0 + 70 U (2-17b)
| X, 0u
PO =1|1- U (2-17¢)
1 X, 02 1/2
] 5 - UX2(O)
- y
P,0) = (2-17d)

>(1(0)2 1/2
—5— - UX2(O)

72




Since the initial state is arbitrary, dropping the subscript zero in (2-17) results in the gen-

eral relations for the switch time, terminal time and adjoint variables.

If the initial fangential velocity and gravitational field are not zero, however,
the simplified steering law is unsatisfactory for the exact problem because no tangential
acceleration is ever produced. As a result the initial angular momentum is conserved, and
as the radial distance decreases the tangential velocity increases until the vehicle either
orbits the target or escapes entirely. Satisfactory performance can be achieved only by

use of a tangential component of acceleration.

In addition, if the gravitational field is ignored, the vehicle will either miss
the target or reduce the range to zero with a non-zero velocity. Either situation is un-
satisfactory since the boundary conditions require the range and range rate to be simultane-

ously reduced to zero.

Quasi-Optimum Control Law - In the quasi-optimum control law the radial and tangential

components of the normalized acceleration are given by (2-8), in which the approximate

values of P and pg are used. The approximations are given by
py =P +§ m; €, t=1,3 (2-18)

From (2-10) however, E] = €2 =0 and 63 = Xg, £4 = X4 and 55 = Xgi

hence (2~18) becomes
P] = P] + m.logo + m]3x3 + m_l4x4 + m]5x5 (2_]9)
Py = Magbp * Mag¥g * Magxy t Masxg (2-20)

Thus only Mg My3r Mygr Myge Magr Maar Moy and Mo in the matrix M are
needed. These are calculated with the aid of the matrix Riccati equation (19). The
coefficient matricies HXX' HPP’ and HXP appearing therein are found by performing
the required partial differentiations on the Hamiltonian for the exact problem given by

(2-7), and evaluating the result at x = X, i.e., Xg = Xy = Xg = 0. The results are

5
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XX~

PP

o

0

-p

139X

o
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o

o_,'Ulc o

0 "Plaxo
0 0
ah,
0 —P]EY;
0 0
0 p o
s
ah, .
13X,
0 0
0 0
0 0
0 0
0 0
0 0




0 1
0 o0
0O o
0 o
~h 0

]

(=]

o><l><o
N [

o

The result of substituting these matrices into the auxiliary system (20) expressed

in component form, is

£, =0

£ = ~hits *+ 26(P),
£, =

: X

g3='>?;‘€3 h3€5+P£]“’3
e4=>-j;g3

£, =0

, oh,

Yo TP, | L 5
b, =-b,

I oh, g

2 71T | 45
SR I B
3 X, 3" X, %
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(2-21q)
(2-21b)

(2-21c)

(2-21d)

(2-21e)

(2-21f)

(2-22q)

(2-22b)

(2-22¢)

(2-22d)




ah,
v, = P, —— £ (2~22e)
4 1 ax4 < = X 5
ah, ah, oh,
b =P Eqt P E, +P E,7 hop, Thoy
5 T 8xg | oy 00 T8x, | L2 Tk | 74 T TT8T8 o
The boundary equations for these differential equations are
£,(T) = - X, MdT = - sgn [P, M]dT (2-23a)
£,(1) = - X,MdT = 0 (2-23b)
¥y = = P(MdT = 0 (2-23¢)
dy(T) = - P,(MdT = 0 (2-23d)
v,(T) = - P,NdT = 0 (2-23e)
bs() = - PsMdT = P (Dh @M = 0 (2-23)
=&, (P, + Eg(MP, (Dh, (1) = $, (@) sgn [P, (D] (2-23g)

Utilizing the auxiliary equations, their boundary conditions and the relationship
Y =ME

we can determine the following properties of the M matrix.
(1) Equation (2-21f) indicates that 55(f) = constant. Thus the first row and

column of the M matrix can be determined form (2-22a) and (2-23c).

i dh, (T)
4’0(7) = P] (T)—B_X—O— €5 (2-22a)
)T ah](T)
t 0
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Thus we have determined that

m

0t 0

T

m

05

(2) In a similar manner, using (2-22e) and (2-23e) it is established that

I

45 = M54 =“{ P (1) =%

‘ ah] (m)
=mgy = - Jt P] (T)————ax dT

0

ah, (1)

4

=m,, =0 t=0,1,2,3,4

t=0,1,2,3,4

dt

(2-25)

(2-26)

(3) Rewriting equations (2-21d) and (2-22d) in matrix form and noting that

d>

1,04 =mys §5 we obtain the system of equations
- ¥ 1 ~ i
x -
1 U
) N e P | |5 ~hats
2 1
Z,b - il.’_]. .ﬁ__ ¢ - m45 g
|73 I Xy X |t 3 ] %o 5
Defining the system fundamental matrix as
a(T, M) b(T, N
&(T, ) = :
(T, N) d(T, A)
£4(T) 0] hyks
= ®(T, N + [ @1, mys
"ps (T) ZPS (f) t - X2 gs

7

(2-27)

(2-28)




it is found that

.
J‘ (e(T, N by - 245 401, M1
ba() = - <0 e 1) 4 : : (2-29)
3 TA(T,n "3 d(T,t) 5
Equation (2-29) implies that
m1,3_m37,=o t=0,1,2,4
Mgy = -di%':—; (2-30a)
T M45
Jole(T, Nhy - —= d(T, N1 dx
_ _ ot 2
M35 = Ms3 = 6D (2-20b)

(4) The remaining elements of the M matrix can be determined by integrating

(2-22b), (2-22c), (2-21b), and (2-21c). Special attention must be given to the integra-

tion of é] (T) due to the impulse function that appears at the switch time oo In
particular,
Yo (1) =9, (1) + €1, (T, 1) (2-31)
where
T ah] (M)
I,(1,1) = J P, (2) 7%, dx (2-33)
f
T A ah](B)
I,(T,1) = [ [ P, (B) —5——dBd\ (2-34)
Pt 2
and
t <17 <T
For 7 < t-
s

8




£ (h7) =&, (1) + E T (1=, 1) (2-35)

Ey(t) = £, (N + £ (D] ~ 1) = E.T, (4=, 1) (2-36)
where
.
I, (r,0)=[ h, (X) d (2-37)
f
T X
It =é‘ ;Y h, (B)dBd X (2-38)
For 7 =t
S
t+
£ (=€ (t=) + 2[° 8P (N1 (M) (2-39)
t.—

S

Substituting Pl (A) = Pl ) - P2(O))\ into the integral and making the change of variable

P] ©) - P2 ©)x

X =

=t - A
s

yields

f_
£, =£(t7) - 2ff+sa[P2<0>x1¢]<rs - X)dX (2-40)

s
Making the substitution 6(at) = 6(1')/]0] , (2-40) becomes

29, (+)
El(*s*) = €](’f;) + —[W (2-41)

After integrating from the switch time i fo the terminal time T the four integrals are
(M) =9, (1) - P, (DT - 1) - £,¢) L, ([T, 1) (2~42q)

Dy(T) = 9, 0) + £ L, (T,1) (2~42b)

79




£, =p OF + 9,0, + &6 +E50g, (2-42c)

£, (M =¥, OF,, + 9,0, + £, OT-1) +£,() + £t g, (2-42d)

where
fooe 2
RN AON
_ -2
AP N ONRY
_ 2
Far ‘FZ(O_M(T'*S)
(2-43)
_ 2
f2 = ryo (s TP
=-I(T f)———2-—I (t ,t)
9 3+ [P,0)] 2" s
. =2
9 = TP, 0 Lt (T =1) = I,(T, 1)

Since there is no boundary condition for l,bz(T), equation (2-42b) is not required.
Applying boundary conditions (2-23a), (2-23b), and (2-23g) to (2-42) and noting that

€](T)= - sgn [P](T)] = UdT

£,(T)=0
-£.MP,(TM) + (TP (Th, (T)
IS WAL ARARMNEL RN
h®= ERENG) = PyMdT
since h] (T) = 0 . The remaining equations in matrix form become
. [9, (1) ]
P2(T)dT 1T -(T-t) 0 -I2(T,f) 4)2“)
Udt | = [f 0 f, 10 g £,(1) (2-44)
£,(1)
0 f2] F22 T-t) 1 9, 2
(1)
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Elimination of dT and obtaining IP] () and l,bz(’r) as functions of E] , 52 ,

and €5 results in

m;=m;p =0 J=0,3,4
m2J=mJ2=6 J=0,3,4
with
Am | = Py0O) (Fyy = £ (T=H) = U(T-H’ (2-45)
Am,, = =Py 0)f 5 - U(T-t) (2-46)
Am = f22(—U12(T,f) - P2(0)g]) +92(U(T—f)+ P2(O)F]2) (2-47)
Amyy = PyO)F,, (T-1) = £5y) -~ U(T-1) (2-48)
Bmgg = FyO)fyy - U (2-49)
Amyg = =F, (FUL(T,1) +9,P,0)) - g, (U = P, (0)F; ) (2-50)
where

A=U- P2(0) F”)Fz2 + F2] (U(T-t) + P2(O)f]2)
which simplifies to
A=t (2-51)
P,(0)

Thus the only nonzero components in (2-19) and (2-20) are M, 5r Masy and

Mas and the quasi optimum control law becomes
Py = P] + msXs (2-52qa)
Py = MgaXs + MasXe (2-52b)

and the M matrix is of the form
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0 0 0 0 0 my, |
0 my M 0 mys
0 my My 0 ms (2-53)
0 0 0 myp O mg
0 0 0 0 0 my
| ™50 Ms1 M52 ™53 Msa4 Ms5

The coefficients m33(f) and m35(f) are given by (2-30). To obtain a(t), b(t),
c(t), and d(t) the time-varying second order system (2-21d) and (2-22d) must be solved.
We were unable to solve this system and accordingly obtained scalar Riccati equations for

m,, and m,_. with the use of (19):

33 35
20, X, Um332
S L YAl (2-54a)
3 %, 3%, 2
X m
- - _1 4 .U -
“Mag = “mgshy - mgg X, "X TP maames (2-54b)
. ah
_m45 = - P] ax4 (2"54‘:)

where (2-54c¢) is required to solve for ma Since the first two of these equations are

5 -

equally intractable, an approximate solution for Mmoo and Mas WAS obtained by assuming

r.n35 and r:n35 =0, i.e.,
P.U
- B 2 1/2 _

man X2 [X] (X] 2X2U) ] (2-55a)

" M45 ]

L 333 X2
m = — = (2-55b)
35 Um33 -_Xl'l
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where

T oh. (1)

- e ] = -
mys = {P](T)———ax4 d7 = I (T,1) (2-55¢)

and P] and U are given by (2-17¢) and (2-15b) respectively, with zero subscript omitted.

It should be noted that m,,., isexactly the same coefficient that was obtained for the tan-

33

gential velocity correction in the problem without the central force field, which was ex-

pected.

After inserting (2-43) and (2-51) into (2-47), noting that 2/ I P2| =2/UP, ,

and simplifying we obtain

m, 5 =I2(r,t) + (sz] - 2)I2(r,ts)
P3 (2-55d)

2
- UP,(P x] - ])I3(T,f) + 5 X]I4(T,'r)

2( 2
The remaining task is to evaluate the infegrals I2 thru I5 (I'l is not needed)

which are functions of h] and its partial derivatives with respect to X2 and X4 . For

the case of a target in a circular orbit, evaluation of these integrals is facilitated because

the angle X4 -, of the simplified problem is a constant. These integrals must be

recalculated for other types of orbits. However, the performance of the quasi-optimum

controller should not be effected by the choice of target trajectory.

For the case of a circular target orbit, further simplification may be obtained

in h. by assuming that the target radius is much larger than the distance between the

1

vehicle and target, i.e.,

r, 2> ax
f

2
Employing this simplification yields

’; GX2
1 3
s

h

(2-56)
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dh

1 ~ a 2 2 2 2
8_x2 = r5 (-2a Xy 4cx2rfcos(x4 be) o (1 - 3cos (x4 -¢f)) (2-57)
1.
ah] a 2
a—a = r—4— sin (x4 - ¢'t)(20x2 *Xor cos(x4 - ®t)) (2-58)
f
Inserting these relations into the integrals yeilds
P]c r6A4 t A3 f4A f3A t A 7
It .1 = s + S + S 2 + S 1 +_S 0
2's’ r5 30 20 12 6
L i
b ) (2-59)
Pa | t7a, %A, 1A t4A 3
_ 2 s 4 4+ S 3 + 5 2 48 1 + 0
] 5 42 30 20 12 6
) - -
Po [ (T-fs)"A , 0 YAy (- )4A2’ (T-+ )3A] (T-t )zAé
I (T,t) = +—3 + 3 + 3 + —
2 s . 5 30 20 12 6 2
t o .
P2a (T-t )7A (T-t )6A d (T-t )5A r(T-t )4A " (t-t )3A !
_ s 4. s 3 + s 2 + s 1, s 0
5 42 30 20 12 6
i i |
_ (2-60)
a fs3 U r52X]
Lo(t,1) = 3 — *— +t X, 2-61)
f -
i 2
, : (T—rs)3 (M=%, )
5(T,t) = r—3 -—3 + 5 +(T- )X, () (2-62)
t L
[ 4 3 2
T.¢,1) = a fs U +_S X] + fs X2 (2-63)
4Ys’ 3 24 6 2
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4 3 2
T-t)"U  (T=t)X, ) (T-t)"X, )
I4(T,i's)— 03 - 22- + 56 1°s 52 2"s (2-64)

P.asin (X,-d)) D

1 4 "t 4 5 5 1 4 ’ 4
I5(T,f) = - r4 = {I’s + (T—fs) } o+ v {Dsfs + DJ(T-1)) }
t

1 3 , 3, . 1 2 sy 12 gy
+-3-{D2fs + D) (T—ts) }+-§{D]’rs +D](Tts) }+DOfS+D0(T fs)

Pasin(X4—<bf) D

2 4 . 6 6, . 1 5 , 5
+ y] 7l * (T-ts) } + 2 {Dgt” + Dy (T-1) }
“t
1 4 , 4, .1 3 sy o1 2 s 2
+Z{D2'rs + D, (T-t) }+—§{D]fs + D/ (T-t) } +2{D0ts +Dg (1)

(2-65)

where g and T-fs are given by (2-17a) and (2-17b) respectively. The coefficients

Az‘, and Di/ are as follows:

>
I

0 -2<'1X2 {ercos(X4 - ¢f) + cxz} + rfz{] —3c052(X4—¢f)}

>
I

2 2
0= -20)(2(?5) {2rfcos(X4—¢f) + dX2(ts)} + re {1-3cos (X4_¢'1-)}

A, = -4daX, {qx2 +r, cos(X4—'¢f)}

Al = -4aX, (fs)[aX2(fS) + r.cos (X, - ¢ )]

A, = -2o{ax]2 +aUX + Urfcos(X4-¢f)}

Ag = -2alaX, ()% - aUX, ) - Ur,cos(X, - )]

85 -




A3 = -2a UX]
A! = 2a°UX, (1)
3 s
A4 = - 02/2
Dy = X2{20X2 + r,cos(X 4-¢f)}
Dy = X, ){2aX, () + r.cos(X 4~ %))
D] = X] {40X2 + rtcos(X4- be)}
Dy =X, () [4aX, (1) + r cos(X, - ®)}
D, = 20X” + 2aUX, + Ur, cos(X,, - ©)/2
D2' = 2aX]2(fs) - 20UX2(fs) ~ Urt cos(X4 - d>f)/2
D, = 2aUX,
D; = -2aUX,(t)
D4 =a/2

Hence use of (2-55a), (2-55b) and (2-55¢) in (2-19) and (2-20) results in

the following quasi optimum control law.

(2-8)

U =
2 A
(Pl +P3)
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where

3
P2

py = P+ X IL-UP ML (T, 1) = UP,I(T, 1)} + L(t 1) + == X, I,(T,1)]  (2-66)

, X3P]U “ - EZ U UP2I5(T,'r) - h3P1 (PZX] - "2 u)
3 X2 1 P2 5 \/2—

(2-67)

Performance With Quasi-Optimum Controller - The performance of the rendezvous control

system using the quasi-optimum control law (2-8), (2-66) and (2-67) was simulated with
the aid of a digital computer. For purposes of comparison, the performance without the

gravity correction ( X. = 0) was also simulated.

5
The first example chosen illustrates a rendezvous between a target in an 80

nautical mile circular orbit about the moon and a vehicle starting on the lunar surface.

The thrust to mass ratio (a) used is 10 ff/secz. Lift-off occurs as the target passes directly

over head. The trajectories for the quasi-optimum and simplified control laws are illus-

trated in Figures 2-2 and 2-3. Using the quasi-optimum control law, the vehicle is steered

very close to the target and the radial and tangential velocities are simultaneously reduced

very nearly to zero.

The control law without gravity corrections caused the vehicle to miss the target
on the first pass and then recovered to complete the rendezvous (see Figure 2-2). The

engine burn times were:

With gravity corrections: 1,267.8 seconds

Without gravity corrections: 1,347 .0 seconds

The trajectories in a second example of rendezvous between a vehicle in a 160
nautical mile circular orbit and a target point on the lunar surface is illustrated in Figure
2-4. Powered descent is initiated when the vehicle passes over the target. The touch-

down parameters for the illustrated trajectories are listed below:
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Tim'e

Guidance Law Miss Distance | Impact Velocity| Attitude| Aftitude Rate
(Sec.) (Feet) (FPS) (Deg) (Deg/Sec)
With gravity corrections | 1152.4 8 7 + 50 + 3
Without gravity corrections | 1153.5 300 750 - 60 - 58

The unsatisfactory performance of the controller without gravity correction is illustrated by

the high impact velocity of 750 fps and attitude rate of -58 degrees per second. The per-

formance using the quasi-optimum conirol law which accounts for gravitation, however, is

quife satisfactory.
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2.3 AIRCRAFT LANDING PROBLEM

Problem Statement - Another application of the quasi-optimum control technique which was

considered is the control of the longitudinal motion of an aircraft during the final approach
phase. It is assumed that the "ideal" descent path is specified, along which the glide path
angle is small (Figure 3.1a). It is also assumed that the forward aircraft speed is maintained
essentially constant by utilizing throttle control. Thus, the longitudinal motion of the air-
craft is governed entirely by the elevator deflection, &), which is the only control vari-
able. These assumptions lead to the so—called “short period" equations of motion of the
aircraft. The control problem is formulated to obtain an optimum control of the elevator

to guide the aircraft back to ideal descent path if any deviation therefrom is detected.

To obtain the short-period dynamic equations consider motion in the vertical
plane. The (rigid body) forque acting at the center of pressure (cp) is
=7 v - / 1 - y -
Mcp - P md(\/GXsm )] VGYcoslb) 38-1)
where Icp is the moment of inertia about the cp and the other quantities are defined in

Figure 3.1b. Now

VGX = v{t) cos (¥ + @) (3-2)

VGY

v(t) sin (¥ + o)

where ¢ is the angle-of aftack. Hence

M =T lb +mdvll)cosa +mdy & cos @+ mdv sin & (3-3)
cp cp

The torque Mcp is induced by the nonlinear aerodynamic resistance forces,the

elevator deflection 6, and gravity force. The respective torques are MR , Mg and M ;
g

8

M =M, +M
cp

R ¥ Mg T M,

It is a general practice to represent the aerodynamic resistance in terms of func-

tions of the angular velocity of aircraft. Assuming that the angular velocity lb is of such
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a magnitude that the higher order terms l,b3 ’ 12)4 , ... can be neglected, then

M, = -2KD]:,b - KD2¢I¢ |

where KD] and KD2 are constants.

The moment M, induced by elevator deflection is usually expressed as a linear

function of the deflection 6, i.e.

= £
M6 KE 6
where KE is a constant coefficient and 4 is as defined in Figure 3.1(b). Thus
= - b b |4 X -
Mcp ZKD]Qb KDZIP |9 [ + KE 6 +mgd cos ¥ (3-4)

The vertical displacement from the ideal path is denoted by ef(t); it is seen that
e(t) = v(t) sin (o +9) (3-5)

To consider the dynamics of the angle-of-attack @, sum the forces in y-direction:

mg cos P - KDsino{ - KLcosol - KEﬁ = m;i—,r (v sina)

(3-6)

= mvsin @ tmy & cos &
where

KL is the lift force per unit angle of attack

KD is the drag force per unit angle of aftack

Thus, (3-3), (3-4), (3-5) and (3-6) completely specify the system dynamics.

Assuming small @ and ¥ , i.e. sin@ =~ o ,sinP =P, cosa~ 1, cosP=1,

(3-3), (3-4) and (3-6), after a bit of manipulation, become

K 2K
D, . D K d K.d (4 +d)XK

. 2 . + . L

Pr2plbl e 1Ty P g b Es )
cp cp cp cp cp
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. mv + KD mg - K K
o = - o + - o} (3"8)
mv mv myv

For this investigation, we assume that the variation of angle-of-attack is negli-

gible, & =~ 0, and that the forward aircraft speed v is constant. Then (3-8) gives

mg - K, - K_6
o= et (3-9)
D
and (3-7) becomes
. K02 o 2KD] + mdv ] |
b+ —blol+r — b = 7 (mgd +K;15) (3-10)
cp cp cp

Observe that the right hand side of (3-10) represents a normalized total torque acting on
the aircraft. It is reasonable to keep the total torque at reasonably low value, by proper
choice of control torque, and hence to include total torque penalty into the performance

criterion.

Since the aircraft altitude and time duration for maneuvering are both limited
during last phase of landing (typically altitude is about 100 ft at 20 sec. before touchdown),
it is important to maintain the deviation e(t) as small as possible during the control interval

and to force the deviation to zero.

With these considerations, possible choice of performance indices are

T 2 2
V.‘ = ‘r [e” (t) +k(total torque)” ]dt
0

or
T
V2 =f e2(t)df with  |total torque | < constant
0
or T ,
V3 = f [k + (total torque) ] dt
0
or
T
V, = [ [k, +koe2(t) + (rotal torque)’ ] dt
47372 d
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or T

V5 = J. [k +e2(f)] dt  with ’fofal torque l £  constant
0

For this investigation, the first case will be considered.

From the viewpoint of safety and passenger comfort, the pitch angle ¥ (t) should
be kept within a small range during the entire interval of last phase landing. Thus, if we

let R(t) represent the ideal descending route the glide-path angle B () is

B¢) = tan” ' RE)

hence, if we let $ (T) = 0, the ideal path R(t) should be so chosen to satisfy

P (T) = fun—]l.i(T) +toa =0

but T can be any instant along the ideal route, therefore, in general

tan 'RE) ta ~ 0

and R(t) is approximately a straight line for & = constant.
Exact Problem - In the application of the quasi-optimum control technique we have sel-~

ected V. as the performance criterion, and have defined the state variables as follows:

1

x](f)=e Xq =V

x2(f)=l,b+ot x5=a=KD ya)

!
o
]
~
~

X3('l') = ‘2’ x6 =

= L
u (mgd+KE 6)/Icp
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Note the use of exiraneous state variables x 47 X5 and x, to represent the constant
parameters of the process. This device is used frequently in the application of the quasi-

optimum control technique.

The assumption of constant angle-of-attack and constant forward speed thus

lead to the following dynamic equations:

xo = 5 (4 + 12 ... %M = V)
x] = x4sin x2
X9 = Xg (3-11)

It is desired to minimize xO(T) with % M = %y T = x3(T) =0.

The Hamiltonian for system (3-11) is

he 0,2 22 . I |
= —2—(x] U )+p]x4sm Xy F PoXq = p3(x5x:3 xal + x,xq +u) (3-12)

and the moximum principle gives

u:—

P3 )
k2

(3-13)
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The corresponding adjoint equations are

Py = O

Py =%

Py = "Py¥y4 05 X

Py = ~Py * 2xgxglpy + x4p
54 = =P sin %y

Ps = lexslps

X3P3

Simplified Problem - Assuming that the constant coefficients v, a, b are small, and

= 0) in (3-11) and (3-14), we obtain

letting these constants equal zero, (i.e. Xg T Xg T X

(3-14)

a simplified system whose exact solution is readily available. Let the state and adjoint

variables of the simplified problem be denoted by

X = [Xo, X], X2, X3, 0, 0, 0]
and
P=1[P,, P-l: P21 P31 0, 0, 0]
Then we have the simplified system
1,2 2,2
X0 =3 (X] + k™U%)
X] =0
X2 = %3
X3 =-U
with Hamiltonian
P
_ 0,2, 2,2 )
H T(X] +l<U)+|:’2X3 P3U
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(3-16)

(3-17)



and the adjoint equations

Py =0
Py =X,
P, =0
Py = -P,

with the mixed initial and boundary conditions

Xo@) =0, %0 =X, %0 = Xy, X30) = Xgq
XO(T) free
X] (T) free
X2(T) =0
X3(T) =0
PO(T) = -]
P](T) =0
The exact solution for the simplified system can be summarized as follows:
p
u® = - _30
k2
Plo =~ %507
_ 6k
P20 =73 (TXg0 * 2%/
- lk_
Pao = '|‘ (2TX, 50 * 3X20)
1 2k2 2 .2
R s Rt U T g0
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(3-18)

(3-19)

(3-20)

(3-21) f
(3-22)
(3-23) :
(3-24)

(3-25)




where the non-unique expressions for T are given as follows:

2
kX3
(1) IFX3200ndX220,or, X3<O and X22 6X] then
X, EXE ekx,
T= o=+ * =T, (3-26)
] X ]
] 2
kX3
(ii) 1If X3$0 and XZSO,or, X3>0 and X2 < - 6)(] then
kX, > SN
T=-——+ + =T (3-27)
X 2 X 3
1 X] 1
3 X
(iii) If X3>O and -—6'—XT <X2<0, or,X3<0 and 0<X2 <—6——]
then
T=T] if S(T])<S(I'3)
T=T, it ST > Sy
T=T oT=T, if S@) =50,
Quasi-Optimum Control - In accordance with the general theory, the quasi-optimum
feedback control law is given by
1
v = -y (Py Fmggxy F magxs * magxe) (3-28)

k

where Mogr M35, Mg, are the correction coefficients to be obtained by solving the

auxiliary equations ( 20 ) with the coefficient matrixes given by
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N
N
[\
) ]
™
o © a0 o o
™
Q.
™
o o X ©o o o
o
[72]
o g © o o o
-DI]
™
a.
M ™
o © o o X &
o
1
wv
o © o g oo
—
a.
o ©O © o o o
() O o © o o
L ]

(3-30)

(3-31)
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Or, in component form,

£
€y = X8 - k—z‘po
£ =sin Xy &,
€ =83

£y = - X5 1X5le5 2% 2%
£, =65 =£, =0
and
b, =0
by =& - X9
;})2 = -Pcos X, &,
by = 2151585 + Pag, - b
by = Py eos X 8, -
by = 21X, [Paty + X5 1%, 10,
by = Paty + Xgb
with the boundary conditions,
£, = -X ()dT = 0
£,(1) = - X, (T)dT = 0 -
€4 = ~XgMT = UMT = - 5T

oM = =Py MdT =0
y(M) =-P,@MdT =0
$:(T) = -P(MdT =0
b (1) = -P,(T)dT =0
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(3-33)

(@

(b)
()
)

(e)

(@

(c)
€)
)
)
(@

(3-34)



and

PaMELM) = XyMipy M)
or Pon(Pay = PooT)
gm =--2 207,

k

Since, for our purpose, we are only inferested in obtaining 4)3(0) in terms of
E_L(O) s , an observation of equations (3-32), (3-33) and (3-34) reveals that only the set
of (3-32¢), (3-32d), (3-32¢), (3-33a), (3-33c) and (3-33d) has to be solved.

However, the integration of these equations is complicated by the presence of

nonlinear terms involving |X3 |. To illusirate the procedure we will consider the integra-

tion of P3 IX3 | . From (3-16) and (3-18) we have

P P
t s 30 20 _2
{ P3|X3|d'r— I\ P3|X30 =T - T ldT
0 0 k 2k
1P| 2 -
P 2k X 2P
t
- 22 P3| i 30 , P3OT“72|‘”
2k ¢ 20 20
But
2 2 2 2
2k“X 2P P 2k X P
P3°+P3°T-72=(—P3—°)+ P3°-(-—P3—°> =0 (3-36)
20 20 20 20 20
gives
2 2
T, P P 2k X
re( 2= (___P3°) + D (3-37)
1 20 20 20
Since T 2 0 and is real, we have
2 2
P 2k“X
(Tﬁ_o) + = 30 - (3-38)
20 20

Thus, in general, we would have a curve of the appearance of Fig. 3.2(a) for (3-36).
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Notice that the shape and the location of the curve is governed by P30/ P20 and
(2k2X30)/ (P30) . Hence, we may have the following four cases.

2
P 2k™X
() p==0 —2 50
20 20
2
P 2k™X
30 30
(i) 2 o, 5 20
20 20
2
P 2k™X
(i) = s0 , 220
20 20
2
P 2k X
(V) 5= =0, —L <0
20 20
Using expressions (3-23) and (3-24) we have
Po _ Tl * 3% o)
P20 3(X3OT +2X20)
2%, Xagl"
T (X T ¥ 2% (3-40)
20 30 20
and from the fact that T > 0, we can show that case (iv) is impossible.
Furthermore, from (3-38) we have
T, T _
{T = 2 o (3-41)
1 XonT

30
3(X3OT + 2)(20)

where Ty > 0 and T 4% 0, and it can be observed that T

(ii) or (iii), while T > 0 corresponds to case (i). Thus, in case (i), it is possible to

£ 0 corresponds to case
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have T %TZ . Denote the case when 7, < 7, by (ia) and that of T

1 2
we can summarize that

Case () 130

P 20 , P3o <0
20 20
X
@ If Xy <0 and <- -2
30 %20 3
X T
30
or X30200nd X20>— 3

then jPlxldf—-j chlf+j PyX 5t

’ 3
1
X AT XKoo T
30 30
b) lfxsoso and - 3 sx20<-—2—
X AT KonT
30 30
- > -
or X30 2 0 and 3 2 X20 5

then [P IXg ldt = - [T PoX dt

Case (ii) P—3(-)-20, P—3(—)20
20 20
2X AT
30
If X30 <0 and X202 =5
2X..T
30
or X3020 and X205— 3

then J‘TP3|x3|dr = jTP3x3dr
0 0
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=T, by (ib) then



Case (iii) ———P30 <0, -——P30 =20
20 20 a

XonT 2X AT
30 30

If X3OSO and - <x20 < - 3
KnT 2X AT
30 30

or X30 <0 and - > XZO > - 3

then [T P lx ldr = [TPX,di
0 0

These cases can be easily seen from the shapes of X, as shown in Fig. 3.2b.
The regions for each case on the X500 %30 plane are illusirated in Fig. 3.2c.
Thus, integration in the order, (3-32e), (3-33c), (3-33d), (3-33a), (3-32d) and
(3-32¢) gives

£,4(t) = £,0)

E5(t) =£:0)

Eg(t) =£,0)

by (1) =9, (0) + A (1)E,(0)

Pa(t) = $5(0) + B, (1), (0) + P;z(f)€4(0) *+ By(1)€50) + B,(1) £,(0) (3-42)

Po(t) =4 ,0) =0

£4(1) = £,00) + C (Nh,(0) + C,(1h,0) + C4(NE,0) + C,(NEL0) + Co(NE,©)

(3-43)
£,(1) = £,(0) + D (NE,0) + D,(1Y50) + Dy(Nh,(0) + D,(NE,0) |
+ D, (NE0) + D, (DE, ) (344
where A, B, C,, D, are time-dependent coefficients resulting from the required ’
integration.
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Applying appropriate boundary conditions in (3-34) to equations (3-42), (3-43),
(3-44) and solving for !,b3 (0) in terms of & i’(O)’s yields

In particular, the required coefficients are given by:

' 2. (1 . K 1, K 1, K\, 2 (1 ., K\, -3
= — A+ — — —_ - = —1 £ - —
myy = T {(12 +6)&1 ! (30 ¥ 10) T (60 * 15) 3! (1 57 21) y

0
1K\, -4 1K 5 1 K\, .6
- _ —_ —_ —_— — 1 4 -
(168 * 28) LT+ (252 * 36){'6T * (360 * 45) 7T (3-46)
1K 7
- (‘m " 5“5) U
where
- P, Py - P,T)
T 47, (P, ~ P,T)
X5
Y= R0-5)
X
Ly = X (- =) = PXOX
p p
_ 1 [2 Pg%
Ly = XX X3 + 5= (X3 + 2 )

£=15-Px—-P2x2 + X x24P3X2
4722 \3"37 73 1 st T2

hlp(i__@ﬁ)f_«(,,x_iziz_)
5 2 1 4k4 3k2 I<2 33 3
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2
P I N1 T & _ KRXg
6~ 4|8 1 @ 3

2%k
1 Pﬁ’i)
= [xpp -2
7 ]2k4(123 3
X P2
L:._]__z_-
8 st

Mag = k X3 (3-47)

For case (ia)

mas = C LT (A1B) + A)B) — AsBy +AB, +AsB ~ AB, +AsB, = AgBy) o-18)
+Cy(ArBy = AgB o+ AR = A By TAB HAB - AB o+ AGB, )]
" where
4 P2 2 2
A =k 1T,;rx3 A7=P3|P3|+k P2|X3|
p
2 B R
Ay =K 1, 1 1% Ag =3 (2R 175l + I7]Py
P
2 5 2 2 2
A3—~—§<kP2|X3|+]—@P3) B, = T° - 87T +67]
1 2
A, ZP2IP3I B, =87 (T-7,)
_ 1.4 . 3 4
A5—P2lP2| By=5T +87.T-97,
A, = 2k2p | Xal B=2£+2T4T—E7'5
6 3'73 4 5 1 5 1
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T 5
_ T 2 1 4 8.5
By = - (17 - 47,7 +377) B, = 6(% -2rf1 + 315
6
_ 2 _1° .5 42 3.6
By =27, (T-7)) Big=7 -3 T+7, T +357,
4
T 2.2 16 _3 4 _ 2 2 3
B, =5 + 27210 - 2757 + 37 B, = -2027, 103727 +77)
5
T 3.2 , 4. 185 _ 14,22 3. .4
88--5—+21']T2 677 + 2] B = -5 T - 4727% 4 8777 - 37
. i 2 _ 7. .5 ,.32 . 4 185
B, = 3(1° - 47T + 277) Bl =35 T - 47, 10 497 - or
B]0=2(T3-6T]2T+4T]3) C, =~ L
K2T2(T + 4P (P., - P.T)]
4 2tP3 = Py
T 3 4 B
B, = 3(- - 47T + 377 C, = 2 (P - BT)

For case (ib)

4 A, 5
- A2, T - T _ _ 2 3
Map = C]{T[ AT+ o (A= =5) - 5 (4A, - AJ)] + C,[=3AT% + 2A,T
B o 6 (3-49)
-3 (3Ag + A)) + 55 (12A, + 7A)) - 4AT 11}
For case (ii) and (iii)
_ 3 2 2 3 4
mas = G LAT + CT @A, + AT+ A T - AT +4ATY)] (3-50)
where
2
Ag = 2k°P, Ix3|
P
T2 2 2
Ao I_Pz‘lps - KR, 1]
A = Pslpzl
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Results = Observe that while the simplified control takes the form

ug = fiks %0 x3)

the quasi-optimum control uq takes the form

uq = Fz(k, X| 1 Xo x3)

where

f-l(k: 0, 0) = fz(kl x]l Ol O) =0

Thus, it can be seen from the system dynamic equations that if both Xy and
X3 vanish, or become small, simultaneously. The X, component of the system may stay
at certain steady state value x; . This is so because the feedback controls u and u

1ss

are mostly dominated by x,, and X3 rather than by x

2 1°

However, for some given initial conditions of x; , it is possible to adjust the

1
value of k fo eliminate the steady~state error |6 *

A computer simulation study of the conirol system with @ = 0,01, b =0.1,
v = 2.0 and initial conditions X10 = 2.0, 50 = -0.5, Xa0 = -0.2 the value of k
for which x](l') = 0 is approximately equal to 3.54 for quasi-optimal cpnirol and 5,18
for simplified control. Fig 3.3 shows the transient response of X171 Xps X3 for k = 3.54 .
Fig 3.4 shows the plots of X (M), S(@M) and T wvs. k and which indicates that for

Xigs = 0 the quasi-optimum control system have both better transient time and performance.

For the initial conditions X10 = -2.0, X0 = 0.5, Xaq = -0.2 however, the
situation is reversed. In this case the quasi~optimal control system has both worse

transient time and performance.

For the initial conditions X10 = -2.0, X0 = -0.5, Xag = -0.2 and
X0 = 2.0, %0 = 0.5, x,~ = =-0.2, itisfound that no value of k could be found

30
tomake x, =0.
Iss

From these results it can be concluded that the quasi~optimal control system
derived gives better performance than the simplified control law only in certain cases.

Further study of this problem, utilizing alternative simplified systems, should be undertaken.
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CONCLUSIONS AND RECOMMENDATIONS

On the basis of the results achieved in the examples considered under Contracts
NAS 2-2648 and NAS 2-3636, it is our conclusion that the quasi-optimum conirol technique
described herein is a valuable tool for the design of practical feedback control systems. As

indicated in [A1] , two conditions must be met in order for our method to be applicable to

a particular design problem. First, the actual process must be capable of being approximated
by a simpler process, and, second, the exact control law for the simpler process must be
found. Experience with the physical problem to be solved is an aid to meeting the first re-
quirement, and familiarity with the solved problems of optimum control is an aid to meeting
the second. The successful application of the technique to a particular design problem,
however, will ultimately depend on the user's ingenuity. We regard this as an asset, not

a shortcoming of the technique.

Although we have shown that for sufficiently small values of the parameter p
in the mildly nonlinear process (34) the performance of the quasi-optimum control law is
superior to the simplified control law, a general proof to this effect has as yet not been
obtained. It would appear, however, that the approach used to establish the above result
can be extended to a wider class of problems in which the exact process reduces to the
simplified process when a parameter p— 0. It would also appear that the methods used
for the mildly - nonlinear process can be used to assess the stability of the quasi~optimum

control law. The problems of performance and stability require further investigation. !

More attention should also be given to the application of the technique to
problems in stochastic optimum control. [t would be desirable to calculate the stochastic
quasi-optimum control law for a (nontrivial) problem for which the stochastic optimum con-
trol law is known, in order that a better comparison between the exact opfimum and the

quasi-optimum control laws can be made.

Other areas which are worthy of more work are the application of the technique

to the treatment of state variable constraints and to the problem of trajectory optimization.
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More completed examples will add practical insight into the advantages and
limitations of the technique. Consequently we recommend completion of the studies of
aircraft fanding described in Section 2.3 and of reentfry guidance described in [A1] .
Studies of the application of the quasi-optimum control technique to other problems in

guidance and control should also be undertaken.
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APPENDIX 1

ON THE INVERSE OPTIMUM CONTROL PROBLEM
FOR A CLASS OF NONLINEAR AUTONOMOUS SYSTEMS

Fred E. Thau

SUMMARY

Some aspects of the inverse optimum control problem are considered for a class
of nonlinear autonomous systems. A closed-loop system with a known control law is given;
the problem is to determine performance criteria for which the given control law is optimum.
Algebraic conditions that must be satisfied by a class of scalar performance criteria of the
form V = ‘rm[q(x) + h({u)]dT are obtained. It is shown that if the value of the optimum
Ve s reqttired to be a quadratic form Vo = x’"Mx/2 of the current state x, and if cer-
tain state variables cannot be measured, then M cannot be positive definite. The inverse
optimum control problem corresponding to the problem of Lur'e is considered. Examples are
given to illustrate the techniques and to compare the properties of a linear and nonlinear

system having the same optimum performance VO (x).
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1. INTRODUCTION

In recent years engineering applications of optimum control theory have to a large de-
gree been confined to linear systems. The principal reason for this situation is that the theory
of linear systems with performance criteria of the form

1=, ’
V = —; (x"Qx+u'Ru) dT
2
has been developed te¢ a more advanced point than has the theory of optimum nenlinear systems.,
Moreover, frequency-domain interpretations of the theoretical results for linear systems have
made these results more accessible fo engineers who are familiar with the classical frequency-

domain techniques of analysis.

A major contribution to the development of linear optimum control theory was the paper
of Kalman [1] in which the point of view of the inverse optimum control problem was introduced.
The inverse problem of optimum conirol theory can be siated loosely as follows: "Given a
dynamic system and a known control law, find performance criteria (if any) for which this con-
trol law is optimum." Kalman considered a precise formulation of this problem for linear
cutonomous systems and derived many inferesting time-domain and frequency-domain properties

of linear control systems.

The purpose of this paper is to investigate some aspects of the inverse problem for certain
nonlinear control systems. Recent results [3] on the use of higher-order forms as performance
criteria for nonlinear systems indicate the usefulness of nonfinear control faws. This study
endeavors to contribute to an understanding of the relationship between the specification of a

performance criterion of the form

o]

V = [q(x) +h(v)] dr

e
J
t

(where g(x) and h(u) are scalar functions) and the structure of the resulting optimum control

system. The essential assumpticns upon which the analysis is based are:

1) The conirol acts over an infinite fime intervai.
2) There are no constraints on the control or state variables.
3) The integrand of the performance criterion is a sum of a function of the

state q(x) and a function of the control h(u).

4) dh/du is a 1-1 mapping, h(0) = 0, and dzh/du2> 0.
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In Section 2 the inverse optimum control problem is formulated for a general class of
systems and performance indices, and in Section 3 general properties implied by optimality are
obtained. Two special cases are considered in Section 4: first, the algebraic and frequency-
domain characterizations of optimality which were obtained in [1] for single-input linear
systems are generalized to multiple~input linear systems, and then it is shown, for linear and
nonlinear single-input systems, that if the optimum performance is required to be a positive '
definite quadratic form in the state variables, then the optimum control must be a function of i
a linear combination of (at least) those state variables which are directly affected by the control. 5
In Section 5 a class of control laws satisfying the conditions imposed in the problem of Lur'e is
considered and a class of performance criteria for which the given control law is optimum are

determined.

In Section 6 two examples involving cubic feedback are presented. The first example
illustrates the property of single-input optimum systems mentioned above. The second examgle
provides a comparison between a nonlinear system and a linear system having the same optimum
performance. It is found that the nonlinear system provides smaller excursions of the state
variables than does the linear system. This property may be useful in cerfain enginzering

applications.

2. PROBLEM STATEMENT

Consider the nth - order process
x = f(x) + Gu (1)

where the state of the process x is an n-vector, G isan nxm constant matrix, and the con-
trol function u(t) is a confinuous function of time. This paper is concerned with performance
criteria of the form

V (x(t);u) = I Lq(<) + h(uv)] or (2)

f

where q(:) and h(-) are smooth functions of their arguments. Additional assumptions that
will be required in the subsequent analysis are the following: the vector function M(u) = dh/du
is a 1-1 mapping, h(0) = 0, and d2h/du2 > 0. The motivation for these conditions will

become clear in the next section.
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Note that the integral in (2) is a continuous functional of the control function u(T).

Of particular interest are feedback control laws of the form
u(T) = e(x(T)) (3)
which when applied to the process (1) result in an asymptetically stable closed-loop system,
x = f(x) + Golx) (4)
Thus the origin x = 0 is considered the target set and the control law (3) is assumed to be such
that

fim x (T; x(t)) = 0
T ¢

where x(p(T; x(t)) denotes the trajectory of the asymptotically stable closed-loop system (4) .

The inverse optimum control problem can now be formulated as follows: Given a control
law (3) with the above properties, find the most general performance functional (if any) of the
form (2) which is minimized by (3) . Note that an optimum control (3) is assumed to exist; in
the next section we will apply the necessary and sufficient conditions for (3) to be optimum

which are implied by Hamilton - Jacobi theory [4].

The structure of the given closed-loop system is shown in Fig. 1. Note that two systems
may have the same trajectories x{t), t > 0, yet, in terms of the above structure, they will

be considered as essentially different control systems. (For example, the system

>'<] = %, (5a)
>'<2 = XXy U

where v = -x:D; , and the system
>'<] = X, (5b)
>'<2 = —2x]—x2 +yu

where u = —(x? —x]) will have exactly the same trajectories {x](f), x2(’r)} if they have

identical initial states. However, (5a) and (5b) will be treated as essentially different control

systems since the vectors f(x) and G©(x) for (5a) and (5b) are clearly not the same.)
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FIGURE 1 (APPENDIX)
STRUCTURE OF GIVEN SYSTEM

123




3. STRUCTURE OF OPTIMUM SYSTEM

The necessary and sufficient conditions for optimality which were derived by Kalman

[4] (restated for the current context) are as follows:

Let
Hix, 2, ) = -Lqt) + h(w)] - %’ - [Hx) + Gu] (©)

Y
ox '

have an absolute maximum with respect to v at u = @(x) where ¢(x) is differentiable in x.
Then

(1) The twice differentiable function VO(x) is the optimum performance, and

(2) ©(x) is the optimum control law

if, and only if, VO(x) satisfies the Hamilton-Jacobi equation,

2 (o]
max H(xl _a_:(Ll U) = O, VO(O) = O (7)

U

[t is assumed that there are no constraints on the control u. Then, since

dzh/du2 > 0 and N (u) is a 1-1 mapping, H of (6) is maximized by differentiating with

respect to u. Thus

7 (-G730) ®)

o(x)

and (7) yields

1l

q(x) = ~hK) - = - [f(x) + Go)] (9)

av°
x
. . . . o
To obtain more explicit results, the value of the optimum performance index V', as

a function of the current state x, is assumed to be given by

VO(x) = -;—X'MX (10)

where M is a constant symmetric matrix. It is well known that linear optimum systems with
performance criteria of the form (14) below yield optimum cost functions of the form (10) with
M positive definite. [t is shown below that certain optimum nonlinear systems also have
optimum cost functions of this form. Thus, from a practical engineering viewpoint, the choice
(10) will allow a comparison between the performance of a given nonlinear system and

corresponding linear system to be given in Section 6 below. From a mathematical standpoint
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the restriction (10) is inessential: other higher-order forms could be assumed and an analysis

similar to that presented below would follow with only minor changes in the details.

With V° given by (10), (8) and (9) become

It

0(x) = N7 (-G’ Mx) (1)

and

q(x) = -h@(x)) -x"M(f (x) + Go(x)) (12)
where (11) and (12) must hold for all x. Hence the symmetric matrix M and the scalar
function q(x) are determined from the solution to (12) and h(u) is determined as the integral

of the function n in (11).

The transformation implied by (11) between state and control~input for the optimum

system is shown in Fig. 2.

In general V° is non-unique, and the problem is to defermine consistency conditions
regarding the choice of matrix M and functions q{x) and h(u) . A technique that might be
considered would involve solving the first-order partia! differential equation (11) by the method
of characteristics. However, since the nonlinear ordinary differential equations that result are,
in general, impossible to solve, another approach must be used in the sequel. In Section 5 an
explicit form for the control faw ©(x) will be assumed and (11} and (12) will be used to de-
termine algebraic conditions that are necessary and sufficient for the optimality of the given

control law,

4. SPECIAL CASES

Linear Systems ~ Consider the compleiely controllable, multiple-input, linear, time-inveriant

system
% = Fx + Gu (13)
where F isan nxn matrix and G is an nxm matrix. The performance index is
vV = %IQ(X'H’HX + ') dT (14)
f
and the optimum performance is required fo be Ve = %X'Mx . The given control law which
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FIGURE 2 (APPENDIX)
CONTROLLER FOR OPTIMUM SYSTEM
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drives the system towards the origin is
u = -Kx (15)

where K is a known constant mairix and M and H are unknown censtant mairices. Since

(11) and (12) must hold for all x, (11) yields

K =G'M (16)
and (12) gives
H'H + K'K = -MF-F'M + MGK + K'G'M (17)
Define
Fk = F - GK (18)
Then (17) becomes
-MFk-FkM=HH+KK (19)

Thus (16) and (19) are necessary and sufficient algebraic conditions for control law (15) to k=

optimum for performance index (14) .

In [1]Kalmon considered single-input linear systems, required M to be positive
definite, and (in Theorem 4) presented (16) and (19) along with the positive definite condition
on M as necessary and sufficient for (15) to be optimum. Using (17) ons can obtain the
multiple~input version of the frequency-domain characterization of optimality that was obtained
in [1] for single-input linear systems. Using (16), write (17) as

~-MF - FFM = H'H - MGG'M (20)
Add and subtract sM from the left-hand side of {20) to obtain
Msi - F) + (=si - F/)M = H'H - MGG’M (21)

Define

i

®s) = (st = F) (22)

and pre-multiply both sides of (21) by G’®’(-s), post-niultiply both sides of (21) by
®(s)G, and add an mxm identity matrix to both sides of (21), to obtain

(0 + GO ()K" )L + KEG)G) = 1 + GO (-s)H HE()G (23)
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Let s = Jw and define

TYW = i + KFJw)G (24)
Then (24) becomes
T (Jw)T(Jw) = i + G’ @ (-Jw)H HO{Jw)C (25)
or
T (Jo)Tw) < i (26)

which is the frequency~domain characierization of optimaiity for multiple~input linear systems

with performance criteria of the form (14). *

Single~Input Systems - Now consider single-input asymptotically stable systems of the form

(1) where G’ = (0...01). The following necessary conditions for M in (10) to be positive
definite will be established: if M is positive definite, then u must be a function of (at

least) X This follows from (11) and Fig. 2 by a simple proof by contradiction: assume u

is not a function of X Then, since M is a 1-1 mapping

-G'MX = _(mn-lx-l + LY + mnnxn) (27)

where mo.= 0 and M is thus not positive definite, (Since one of its main diagonal

elements is zero, M could be an indefinite matrix.) This contradiction establishes the above

necessary condition for M to be positive definite.

This condition can be generalized to single-input systems in which the control directly
affects more than one state variable: if M is positive definite than the optimum control must
be a function of a linear combination of (at least) those state variables which are directly

affected by the control. For example, if G” = (0...,010...010...0)
Ak 2

(- n

and u is not a function of X and X 1 then

~-G'Mx = —(mklxl oo tm x ot omox, oL, mmxn) (28)

*
This result has been obtained by Anderson in [ 7] wherein the sensitivity problem for

linear systems is also considered.
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where m, = -m, and m, = -m__. Therefore, M is not positive definite since one of
kk rk kr rr :
its principal cofactors is zero.

The above general condition, which holds for both nonlinear and linear single~input

systems, is invariant under a nonsingular linear transformation of state variables, For, if

y = Tx, where T is a constant nonsingular matrix, then (1) and (10) become respectively
y = THT"ly) + TGu (29)
and
V= 2y'Ay (30)
1

where A =TT MT is positive definite if and only if M is positive definite.

Equation (11) becomes

o1ly) = 17N (-G" T Ay) @31)

Suppose G’ = (0... 041.0 .o .S‘]O ... 0). From the above results it is seen that if M is
k r

positive definite, then u must be a function of a linear combination of Xy and X However,

if M is positive definite, then from (31) u must be a function of a linear combination of all

components of y for which

Ty + Ty #0 (32)

Since T is nonsingular, there must be at least one value J, 1 £ J = n, for which

o+ T, . . _ Cieals —
TJk TJr # 0. Thus, since y = Tx, y; isa linear combination of x, and X s and, as

k

before, u must be a function of a linear combination of Xp and X .
This property of single~input systems with performance criteria of the form (2) is signifi-
cant since it indicates that if the value of the optimum performance is required to be a quadratic

1 e e g .
form V° = —x’Mx of the current state x , and if each state variable which is directly affected

2

by the control cannot be measured, then M cannot be positive definite. However, one must
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interpret this property with care. If the optimum performance V° is required to be of a form

other than (10) and if certain state variables cannot be measured, then the problem of finding

0 r » o . ore T . .
conditions under which V™ is positive definite in x is currently an open questica.

5. PROBLEM OF LUR'E

Since the early 1950's there has been a great deal of interest in determining the

asymptotic stability of the origin for a class of systems governed by

X

Ax + b8 (o) (33)
0 = g'x (34)

where x, b, and g are n-vectorsand A is an nxn matrix. The results of the previous
sections will now be applied to this class of systems, where B(0) is considered to be a known

scalar function, defined and continuous for all o, 6(0) = 0, 08(g) > 0 forall ¢ # 0, and
L
j‘ 8(c) do diverges
0

It will be shown that the asymptotically stable system (33) ~ (34) is the optimum closed-loop

system for a class of performance criteria of the form (2) .

For this case (11) and (12) become

8(g’x) = 7! (-b" Mx) (35)

and

q(x) ~%><’(MA + A’M) x -x" MbB(g”x) ~h{8(g’x)) (36)

respectively,

Now assume that 8(0) can be expressed as o power series in odd powers of 0 with

all positive coefficients, i.e.

8@) = E 0,0 (37)

i =
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where all a; > 0. It will be shown that if ‘n—.] ©) is also expressed as a power series

o

) = Z e (3

=1
i odd

and if M s positive definite, then each coefficient ¢, can be determined explicitly in terms

of the coefficients a; and the components of the matrix M. From (35), (37) and (38)

Blg'x) = Z Gi(zgjx,j)i (39)
=1 J=1
1 odd
and
[eo] n )
'n"](_b’Mx) = Z c; (z hjx‘a‘o (40)
=1 j =1
1 odd

where hj = —(Mb)j . Thus (35) becomes

@

. k k
a T Op) el "
2 KTk ] 9171/ ++- 8%,
t=1 all k
i odd J
® , K Kk 41
_ 1 1 n
"> S > KTk o) e ()
1 =1 all k
7 odd J
n.
summed over all E kj =1
J=1
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Since (41) must hold for all X

c]h.L = a,9; it =1, ...,n (42a)
rcoh 2 = a,g 2
2t 2 L,0=1,...,n (42b)
<
Lc2hi-hj = a,9;9;
3 3
reshy = 939
) c3h?',hjh',< = d3gi,gjg|< t,J,k=1,...,n (42¢c)
2
cahihj a39:9
Thus from (42a)
—c]Mb = a9 (43)
Pre-multiplying both sides by b’ yields
¢y = —a]b'g/b'Mb (44)

Note that, since M is positive definite, b’Mb con be zero only if b = 0. However, this

is impossible in a meaningful control problem, and thus b”Mb # 0. Furthermore, since ina

meaningful control problem g # 0 and since a; > 0 and M is nonsingular, (43) reveals

that ¢, # 0.

i
From (42b),
c2h Kh = a,g Kg (45)

where K is any positive definite matrix. Then using h = (al/c])g (43) yields

c, = (46)
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From (42¢),

ca(hk)(h'Kh) = a,(9"k)(g’ Ko) (47)

where K is any positive definite matrix and k is a vector whose components are all unity.

Again using h = (a]/c])g gives

cy = 3 )

a i )
¢, = —= (49)
a _l .

=)

Thus 77_](0') is completely determined in terms of the components of the positive

definite mafrix M and the coefficients of the control law 6(g"x). The function

N(u) = dh/du is the inverse series corresponding to 7]_](0):

«©

GEDRXS (50) i

1 =1
1 odd

where, as indicated in textbooks on elementary calculus, the coefficients d; are obtained by

substituting (50) into (38). The first few coefficients of the inverse series are

d] = ]/c] .
dy = -c3/c‘]”
4, = @i - c?cs)/c? ey

d7 = (8c!:c3c5 - cfc7 - 12c?c§)/c}3
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‘ :l'hus

l 07: + 1
h(0) = E d T T
i=
1 odd
and (36) becomes
] Zm i 9 i+
q(x) = —-i-x'(MA + A’M)x - x'Mch-,(g'x) + s ](g’x)

=1
t odd

(52)

(53)

Hence (52) and (53) with conditions (44) and (49) yield explicit expressions for all performance

criteria of the form (2) that are minimized by conirol laws of the form (37).

Indirect Control - Consider an nth-order system which is again asymptotically stable in the

large,

Ax + bB@)

Xe
]

¢ = g'x - 0()

where r is a scalar and 6(G) satisfies the same conditions as above. Define

y" = [x’ E o). Then (54) and (55) can be written as

y = Ay + bo()
and
o =g'y
where
At oo b
t
A= ‘“E“ , bo=|-—- , 9 =1l[0...011]
g ! 0 -r
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(33)

(56)

(57)

(58)



Note that (58) and (57) are of the same from as (33) and (24) . Thus defire

- n \I) ] .
< " -
[~ A
M= [ T ————— —— (59)
L m2 | L _V_l

so that (42) - (49) remain valid with h o= -Mb.

6. EXAMPLES

The second-order examples of this section are included to illustrate the results derived

above. No essential complication would be introduced by considering higher-order systems.

A. Consider the system (33) - (34) where

0 1 0
A = , b= , 00) =" , g =[-10),a>0
&0
-1 -a 1 (€0)
. . 3 . .
Since the given control 8(x) = =X does not depend on x, one expects fo find that

My = 0. indeed, from (42) h2 = 0; andsince Mb = -h,

Mg = My
(61)
..m22 = h2 = 0
Furthermore,
c] =c, =0
and
N R 2
o h3 3
1 ™2
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Thus,

3 .
A1 _ O _ 1/3
7o) = S ) =
M2
and
_ 3 4/3
h{u) = 7™
From (36)
~Zmy 172 4
—glx) = +x % - a
E M2 F
myremyy 2y
Thus, the performance index that is optimized by the control 8(x) = ~x s
Yomp o @Mty 4
® X
= 1., . 1 3 4/3
omyp My A
By starting with the system
17 %2
%y = =oxy = Xp *ou
one can easily verify that the control v = %y does indeed yield
1 M2
VOox) = -]ix’ x
m 0
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as the solulion to the Hamilton-Jacobi equation corresponding to performance index {65).
- . . o . o . .
Thus, as indicoted in Section 4, V (x} is not positive-definite because the conirol law

8(x) does noi depend on Xy o

B. Consider the system (33) - (34) where

0 1 0
- _ o3 : 2
A = , b= , 8)=0", gl-1-2], a>0 (69)
a
~1 -a ]
Now, since 8(x) = (-x, - Zx )3 depends on x, one expects to find m., # 0
d 1 a2 2 O TR 227 7
From {42),
€ T ¢y = 0
. a
. = 1
3 /3
h]
Since Mb = -h,
=2 ¢
M2 T 7M22 (7€)
and
_ 33
¢y = 8/a L
Thus M is a function of two arbitarary constants M and Moo s
— a
™ 7797
a
Z2M22 M22
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Clearly miy and My, CON be chosen to make M positive definite.
From (40),
-1 8 3 i :
nlE) = et L al) = 2 (72)
a mys
and
3am
22 4/3
h(u) = —5 / (73)
Thus (36) yields
- 02 -
~M22 M1 T M2 T M2
1.,
mab) = 7% 2 Y e
™1 T M2 T M2 ~M92
where
x4 Zm
e M1 .23 622 8 3 24
=Y = 5 Mooty 4 a—x]x2 Foxyxg ——gx]xz) + X, 75)
a a a
Hence the performance index that is optimized by the control 8{x) = (—xi - -gxz)3
a
is
B o>
3} ) "My F My T oMy
1., om0 43
v=j“(.2.x ) x = Y + 25T dT
f Ty T My Ty Femy (76)
| -
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Note that the integrand of (76) can be written as

_ 92 " _
a
Mmoo Ty T oMy T g Moy
1, a 2 4
Ty Mgy T oMy (77)
Thus, by proper choice of M and M,y the integrand (77) can be made to be positive
semi-definite, and thus V in (76) is a Lyapunov function for the given system.
Again by starting with the system (67) one can easily verify that the control
_ 2 3 .
U = —(x] + EXZ) yields
_ . -
™ 2M22
Vox) = %x’ x (78)
a
2M22 M2

as the solution to the Hamilton-Jacobi equation corresponding to performance index (76).

It is of interest to campare the transient response of the above nonlinear system with
that of a linear system having the same optimum performance (78). Using the results of 11

one can show that the linear control law,

] (79)

yields the optimum performance (78) for performance criterion

VvV =

N —

JQx + v?) dr (80)
t
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where

i 02 2 a 2 02 i
7™ " 3Mo T myply 1) = omyy
Q = (81)
2
a 2 a 2
7Mgp * Myply 1) - omy Moz ¥ M2
The values a = m,, = 1/2 were chosen and a digital computer simulation was used

to obtain the phase-plane comparison of the trajectories of the nonlinear and linear systems
shown in Fig. 3. From the figure it can be seen that the nonlinear system provides generally

. Fig. 4

smaller excursions of the position coordinate X and the velocity coordinate x

2
confains a comparison of the control signals required by the two sysiems. It is clear that the
nonlinear system requires a generally greater magnitude of control to provide the smaller
excursions of position and velocity noted in Fig. 3. This is due to the fact the performance
criterion (80) of the linear system provides a greater penclty on the magnitude of control than
does the performance criterion (76) of the nonlinear sysiem. Thus in those engineering app-
lications in which the larger conivol signals can be tolerated, one might consider the use of

nonlinear control laws to prevent large deviations of the state variables.

7. CONCLUSION

Some aspects of the inverse optimum centrol problem have been examined for a class

of nonlinear autonomous systems where the optimum performance criterion
n o .

V= Lg(x) + h{u)ldT is required to have the form V = %—x'Mx as function of the current
f

state x. Using assumptions outlined in Section | it was shown that if a given control law p{x)

is optimum then two equations, (11) and (12), must be satisfied for cll x.

When applied fo single~input linear systems the resulis reduce to conditions already

. r 1o .
derived by Kalman L1]. These results were extended to multiple~input linear systems.
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For asymptotically stable nenlinear and linear single-input systems it was shown that
if each state variables which is directly affected by the control cannot be measured then M
cannot be positive definite, This property is invariant under a nonsingular lineor transformation

of the state variables.

In examining the problem of Lur'e consistency conditions that must be satisfied by
M, q(x), and h(u) were found; two simple examples illusirating the approach were also

given,

These results apply to the analysis of sub-optimum control laws which are derived on
the basis of certain simplifying assumptions [6] . It is of interest fo determine what perfor-
mance criterion, if any, is optimized by the known suboptimum control law. This is an inverse

optimum control problem and is the subject of current research.
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